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Abstract
In scientific machine learning (SciML), a key challenge is learning unknown, evolving physical
processes and making predictions across spatio-temporal scales. For example, in real-world man-
ufacturing problems like additive manufacturing, users adjust known machine settings while
unknown environmental parameters simultaneously fluctuate. To make reliable predictions, it is
desired for a model to not only capture long-range spatio-temporal interactions from data but also
adapt to new and unknown environments; traditional machine learning models excel at the first
task but often lack physical interpretability and struggle to generalize under varying environmental
conditions. To tackle these challenges, we propose the attention-based spatio-temporal neural
operator (ASNO), a novel architecture that combines separable attention mechanisms for spatial
and temporal interactions and adapts to unseen physical parameters. Inspired by the backward dif-
ferentiation formula, ASNO learns a transformer for temporal prediction and extrapolation and
an attention-based neural operator for handling varying external loads, enhancing interpretability
by isolating historical state contributions and external forces, enabling the discovery of underly-
ing physical laws and generalizability to unseen physical environments. Empirical results on SciML
benchmarks demonstrate that ASNO outperforms existing models, establishing its potential for
engineering applications, physics discovery, and interpretable machine learning.
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Nomenclature

Symbol Meaning
X, x State vector (general)
Xm State at timestepm
X̃m+1 Extrapolated (homogeneous) state
F External forcing/loading field
S Hidden system (environment) state
t Continuous time
m Time-index
n History length
∆t Time step size
αk, β BDF coefficients (see (2))
D(η) Dataset for system η
F ASNO operator mapping
ŷt+1 Predicted output at time t+ 1
yt, ŷt True and predicted values at time t
ET Cumulative error over T steps
et Instantaneous error at timestep t
Q, K, V Query, Key, and Value matrices used in attention mechanisms; used generically, with context-specific

definitions below
WE Embedding matrix
WTq,WTk,
WTv

Time-series transformer encoder attention weight matrices for Query (Q), Key (K), and Value (V)
used in the explicit extrapolation step

Pk Positional encoding at position k
dembed, dt, d embedding dimension, key/query dimension, and feature dimension
Ht Penultimate-step latent features used in computing the nonlocal attention operator (NAO) kernel

weights for h and f
Jt Intermediate NAO state at attention step t composed of latent features and forcing fields (Ht,Ft),

iteratively updated across T layers
WP,h,WP,f,
WQt ,WKt

Weight matrices in the NAO used for computing kernel projections;WQt andWKt generate attention
Query and Key vectors used in the implicit interaction modeling

K· Learned nonlocal kernel operator acting over latent space in NAO
H, F Input and output Banach function spaces
T Number of attention steps in NAO

1. Introduction

The increasing complexity of spatio-temporal data in scientific fields such as fluid dynamics, material
science, and manufacturing, particularly in the context of digital twin technologies, has made the inter-
pretability and accuracy of machine learning models critically important. Digital twins-virtual replicas of
physical systems-are becoming integral to modern manufacturing processes, enabling real-time monit-
oring, simulation, and optimization of physical assets (Kapteyn et al 2021, van Beek et al 2023, Karkaria
et al 2024a). In such settings, the critical challenge lies in creating models that generalize to new phys-
ical parameters (e.g. PDE coefficients) while maintaining alignment with underlying physical principles
to enable robust predictions and insights into system behavior. This dual capability enhances decision-
making and facilitates system optimization by aligning predictions with real-world physics (Thelen et al
2022, Karkaria et al 2024b, Chen et al 2025).

Existing methods often struggle to generalize across unseen physical environments, particularly
when tasked with interpreting spatial and temporal dependencies in a separable yet synergistic man-
ner. Neglecting this separability can obscure the physical mechanisms driving system behavior, resulting
in less interpretable and reliable predictions (Molnar 2020, Rudin et al 2022). For example, in mater-
ial modeling, observable phenomena such as deformation fields may provide limited information, and
inferring hidden parameters such as material properties remains an ill-posed problem. Similarly, in
physics-based applications like manufacturing, accurately capturing the interplay between spatial interac-
tions and evolving temporal dynamics is essential for refining product quality and operational efficiency
(Ko et al 2022).

While existing data-driven surrogate architectures-such as transformer encoders, U-Net, DeepONet,
and newer operator-based frameworks like the General Neural Operator Transformer (GNOT),
Transolver, and Fourier neural operator (FNO) have been developed to capture spatio-temporal depend-
encies in physical systems (Zhang et al 2018, Lu et al 2021, Hao et al 2023, Wang et al 2024, Wu et al
2024), they often lack inherent mechanisms for reliable generalization to unseen conditions or for
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disentangling spatial and temporal influences. Transformers, despite their strength in modeling long-
range temporal correlations via self-attention, frequently underrepresent the spatial interactions essential
for nonlinear phenomena such as turbulent flows, reaction-diffusion processes, and phase transitions.
Moreover, many of these approaches struggle to separate the roles of temporal evolution and spatial
coupling, which limits their applicability in PDE-governed settings. Finally, their adaptability to systems
with varying PDE coefficients remains limited, reducing their effectiveness across diverse physical scen-
arios. While the specific implementations vary-from sequence-based encoders to spectral and attention-
driven operators-all of these methods share the common challenge of balancing expressivity with robust,
physics-informed generalization.

To address these limitations, we propose the Attention-based Spatio-Temporal Neural Operator
(ASNO). In ASNO, a transformer encoder captures temporal dynamics in the solution field, while an
attention-based nonlocal operator handles the long-range spatial dependencies and the interplay between
solution and loading/environment fields. Inspired by the implicit-explicit (IMEX) scheme, ASNO lever-
ages the backward differentiation formula (BDF) to separate temporal effects from spatial loading/solu-
tion interactions (Fredebeul 1998, Hu and Shu 2021). This separable architecture enhances generaliz-
ability to unseen physical parameters (e.g. initial conditions, loadings, environments) while improving
interpretability.

The key contributions of this paper are as follows:

• We introduce ASNO, a novel architecture inspired by the IMEX scheme, which discovers separate
mechanisms for capturing temporal effects and spatial loading/solution interactions.

• ASNO discovers a spatio-temporal relationship from data, enabling zero-shot generalizability to PDEs
with unseen initial conditions, loadings, and environments.

• The attention mechanism provides insights into the separable contributions of temporal and spatial
dynamics, overcoming the limitations of models focused on only one of the two.

• We conduct experiments on examples ranging from chaotic systems and PDE solving problems to
real-world applications. Results demonstrate the advantages of ASNO over baseline transformer mod-
els and neural operator models in terms of generalizability, long-term stability, and interpretability.

The rest of this paper is organized as follows. In section 2, we review the theoretical background on
implicit–explicit IMEX schemes and BDF, as well as prior work on transformer encoders and neural
operators. Section 3 introduces the ASNO architecture, detailing (i) the transformer encoder used for
temporal extrapolation and (ii) the NAO that performs spatial coupling and forward solves via a learned
kernel. In section 4, we present empirical results on four benchmarks, namely Darcy flow, the Lorenz
system, Navier–Stokes, and a directed energy deposition (DED) case study, demonstrating ASNO’s accur-
acy, stability, and zero-shot generalizability. Finally, section 5 concludes with a summary of our contri-
butions and outlines avenues for future work.

2. Background and related work

2.1. Transformers for time series data
Traditional time series models such as autoregressive integrated moving average and long short-term
memory have effectively captured short-term dependencies but face limitations when dealing with long-
range dependencies and highly non-linear, multivariate data (Nelson 1998, Graves and Graves 2012).
Transformers, initially developed for natural language processing, revolutionized time series modeling
by introducing self-attention mechanisms that capture dependencies across long sequences (Vaswani
et al 2017, Tang and Matteson 2021, Zerveas et al 2021, Zhou et al 2021). This attention mechanism
allows transformers to weigh different parts of the input sequence based on their relevance, making
them highly suitable for long-sequence tasks (Zhao et al 2024).

Despite their strengths, transformers can be computationally expensive. Their complexity grows
quadratically with sequence length, limiting scalability, especially when applied to large datasets
(Fournier et al 2023). This has driven the development of models like Informer (Zhou et al 2021) and
Reformer (Kitaev et al 2020), which employ sparse attention mechanisms to reduce complexity. Sparse
attention mechanisms restrict the set of key-query interactions to locally or globally selected tokens,
such as sliding windows, strided patterns, or learned global pivots, thereby lowering both memory
usage and computational cost without significantly sacrificing modeling capacity. Models such as the
temporal fusion transformer (TFT) have improved upon traditional transformers by using attention
scores to enhance interpretability and effectively address practical challenges like variable input lengths
and missing data (Lim et al 2021); in TFT, attention scores are computed per feature and timestep,
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providing a transparent measure of each input’s influence on the prediction and facilitating feature-level
explanations. These features are byproducts of TFT’s core innovations in handling complex temporal
dependencies.

These developments underscore the adaptability of transformer architectures in handling diverse tem-
poral tasks, though they remain limited in their ability to generalize to new physical parameters (e.g.
PDE coefficients) and lack mechanisms that explicitly separate spatial and temporal interactions for
interpretability (Cheng et al 2024).

2.2. Neural operators in scientific machine learning (SciML)
Neural operators have become essential in SciML, particularly for modeling mappings between func-
tion spaces (Li et al 2020a). These models are effective at solving forward problems in physics-based sys-
tems, such as those governed by PDEs, by serving as efficient surrogates for physical systems and offering
black-box approximations without explicitly interpreting the underlying physical laws (Wen et al 2022,
Kovachki et al 2023, Azizzadenesheli et al 2024, Cao et al 2024). For instance, DeepONet utilizes separate
networks to encode input functions and evaluation points, thereby learning the nonlinear operator that
maps function inputs to output values at arbitrary spatial locations (Lu et al 2019, 2021). However, as
the problem’s dimensionality increases, DeepONet faces scalability issues (Mandl et al 2024). Similarly,
FNO, which operates in the frequency domain to better capture global spatial dependencies, becomes
computationally expensive either at higher resolutions or when handling non-smooth data (Li et al
2020a). Recent advancements, such as the GNOT and Transolver, have improved the flexibility of neural
operators for handling complex, spatially distributed data. GNOT incorporates heterogeneous normalized
attention layers and geometric gating mechanisms, enabling it to address multi-scale problems and integ-
rate diverse data sources effectively (Hao et al 2023). Similarly, Transolver leverages transformer-based
architectures to solve PDEs on irregular geometries, enhancing its adaptability to various applications.
Beyond these, several recent works have pushed the capabilities of neural operators further: the Galerkin
transformer integrates spectral methods with attention to improve resolution and stability in PDE solvers
(Cao 2021); the multipole graph neural operator scales efficiently to large domains by modeling long-
range dependencies via multipole expansions (Li et al 2020b); the spectral neural operator (SNO) learns
flexible, data-driven spectral filters to better handle non-smooth and multiscale signals (Rafiq et al 2022);
and the Hierarchical Tensor Neural Operator uses tensorized representations to scale to ultra-high-
dimensional problems (Liu et al 2022). These developments highlight the rapidly evolving landscape of
neural operator research and provide valuable context for situating the present ASNO framework within
ongoing efforts to improve scalability, adaptability, and physical fidelity. However, these models often
struggle to generalize to unseen PDE parameters (e.g. new initial conditions or environments) and lack
interpretability in disentangling spatial and temporal interactions (Wang et al 2024, Wu et al 2024).

Most neural operators primarily address forward PDE problems, predicting future states from cur-
rent conditions by capturing spatio-temporal dependencies, but struggle with inverse problems, like
reconstructing unknown PDE parameters, which often require prior knowledge of governing equations
and are generally ill posed (Molinaro et al 2023). Integrating forward and inverse problem solving cap-
abilities into a single spatio-temporal framework enables the development of more versatile models
that can not only predict system behaviors but also infer hidden states and causal mechanisms. This
dual functionality enhances model robustness and adaptability, qualities vital for scientific applications
where elucidating system dynamics, which may inherently encode underlying causes, contributes to more
informed simulation, and potentially supports control and optimization efforts, even if these are ulti-
mately executed through computational rather than interpretative means (Kim and Lee 2024).

3. Model architecture

This section presents ASNO, a spatio-temporal neural operator integrating the transformer encoder for
temporal dependencies and the nonlocal attention mechanism for spatial interactions. We outline the
transformer encoder, followed by the NAO model, and explain their combined role in the form of a BDF
for complex spatio-temporal prediction.

3.1. BDF
BDF is a family of popular numerical schemes for stiff differential equations, thanks to its high-order
accuracy and large region of absolute stability (Fredebeul 1998). Here, Ẋ denotes the derivative of X with
respect to the time variable t, stating that this is a temporal derivative. For a initial-value differential
equation:

Ẋ= F(t,X) , X(t0) = X0 . (1)
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the general formula for a BDF can be written as

n∑
k=1

αkXm−k+1 +Xm+1 =∆tβF((m+ 1)∆t,Xm+1) . (2)

Here, ∆t denotes the time step size, and Xm is the approximated solution at time instance t0 +m∆t.
Notice that (2) can be naturally decomposed as the two-phase implicit-explicit (IMEX) scheme (Ascher
et al 1995):

−
n∑

k=1

αkXm−k+1 = X̃m+1, (3)

X̃m+1 −Xm+1 +∆tβF((m+ 1)∆t,Xm+1) = 0. (4)

In the explicit step (3), n historical steps are accumulated, hence it characterizes the temporal inter-
actions. Notice that when the system is homogeneous, i.e. F≡ 0, we have X̃m+1 = Xm+1. That means, the
explicit steps generate an estimated temporal extrapolated solution for a system without external load-
ing F. On the other hand, the implicit step (4) takes X̃m+1 as the input and tries to solve a (possibly
nonlinear) static equation of Xm+1. Hence, this step is characterized by capturing the spatial interaction
between components of X, as well as their interplay with the external loading F.

Based on this idea, our key innovation in ASNO is to design a separable architecture that captures
the temporal and spatial effects respectively. In particular, our architecture resembles the implicit-explicit
decomposition of BDF. We notice that the external loading F is non-autonomous, meaning that it
depends not only on X but also on another (hidden) time variant quantity, which can be seen as the
hidden system state, Sm+1, to be discovered through learning.

We now formally state the learning settings in ASNO: consider multiple physical systems which can
be described by a series of initial-valued problems:

Ẋ(η) = F
(
S(η),X(η)

)
, X(η) (t0) = X(η)

0 , (5)

where η = 1, · · · ,S is the sample/system index. Then, for each system, we assume a sequence of observa-
tions:

D(η) =
{
X(η) (m∆t) ,F(η) (m∆t)

}T/∆t

m=0
(6)

are provided. The goal of ASNO are three folds:

1. Identify a temporal extrapolation rule (3) from data, for a stable and accurate long-term prediction
of X.

2. For each system with hidden state S(η), infer the underlying context or structure of S(η) directly from
observational data, without relying on labeled supervision or prior knowledge of the state.

3. For each new and unseen system with the first n steps of (X, F) given, provide a zero-shot prediction
rule without training.

3.2. Explicit step: temporal extrapolation
As the first component of ASNO, we employ a transformer encoder to resemble the explicit step (3).
In particular, it processes time series data by capturing long-range temporal dependencies, and predicts
future states of systems governed by high-dimensional, nonlinear dynamical equations.

In transformer encoder, the input to the encoder is a sequence of observations from previous time
steps, denoted as {Xm,Xm−1,Xm−2, . . . ,Xm−n+1}, where n represents the number of past time steps con-
sidered. Each observation Xt ∈ Rd is projected into an embedding space of dimension dembed, with posi-
tional encodings added to preserve temporal order:

Et = XtWE + Pt, (7)

where WE ∈ Rd×dembed is the embedding matrix, and Pt ∈ Rdembed is the positional encoding vector. The
positional encoding vector injects time-specific bias into each embedding, enabling the model to distin-
guish tokens based on their relative and absolute positions in the sequence and thereby preserve tem-
poral order. Positional encoding is implemented as a separate preprocessing layer applied to the embed-
dings before they enter the transformer encoder layers, and is not part of the self-attention computations
themselves.
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The encoded sequence {Em,Em−1, . . . ,Em−n+1} is then passed through multiple layers of the trans-
former encoder, each consisting of a multi-head self-attention mechanism and a feed-forward network,
allowing the model to learn complex dependencies across time steps.

In the attention mechanism (Niu et al 2021), the query, key, and value matrices are derived from the
encoded input sequence using weights WTq,WTk,WTv ∈ Rdembed×dt , which are learnable parameters for the
query, key, and value transformations, respectively.

Q= EtWTq, K= EtWTk, V= EtWTv, (8)

For each system, the transformer encoder processes the previous n embeddings, {Em,Em−1, . . . ,Em−n+1},
and produces a single latent vector Hm+1, summarizing all temporal information from those steps into
one representation.

The attention score between the query at the tth time step, Qt, and the keys K from previous steps is
calculated as a weighted sum, capturing dependencies between the current time step and previous steps.
Formally, for the m-th time step, the future latent space Hm+1 is predicted using the attention-weighted
sum of past values:

Hm+1 = TE(Xm,Xm−1, . . . ,Xm−n+1) =
n∑

i=1

αm,i ·Vm, (9)

where αm,i represents the attention weights between Qm and Km−i+1, computed as

αm,i =
exp

(
Qm·K⊤

m−i+1√
dt

)
∑n

j=1 exp

(
Qm·K⊤

m−j+1√
dt

) , (10)

where dt is the dimensionality of the key vectors. This enables the transformer to focus on the most rel-
evant past steps when extrapolating the latent state.

The predicted latent variable Hm+1 ∈ Rdembed corresponds to the homogeneous BDF extrapolation
X̃m+1 and is passed into the NAO for the implicit spatial correction step (4).

3.3. Implicit step: static PDE solver
For the implicit step (4), we take H̃m+1 and Fm+1 as inputs, and aim to approximate the solution Xm+1.
Since (4) can be seen as a nonlinear static PDE solver, we propose to learn a neural operator as the
surrogate solution operator. However, due to the possible change of underlying system state, S, generic
neural operators (Lu et al 2019, Li et al 2020a, You et al 2022) would fail this task because they focus on
the solution of one single PDE. Herein, we propose to employ the attention mechanism, in the form of
the NAO (Yu et al 2024), which combines attention and neural operator learning, offering a generalizable
solution operator across different PDEs. In particular, NAO expands on traditional attention by effect-
ively modeling long-range spatial dependencies crucial for capturing continuous, nonlocal interactions
within physical systems (Yu et al 2024). This approach allows NAO to aggregate global context, address-
ing limitations of standard attention in handling nonlocal, spatially distributed information, especially
beneficial for high-dimensional data processing in fluid dynamics and thermodynamics.

Formally, NAO is designed to solve both forward and inverse problems, with the underlying system
dynamics encapsulated by operators that map input functions h ∈H to output functions g ∈ F . This
operator is defined as:

LK [h] + ϵ= g, (11)

where H and F are Banach spaces, K is the nonlocal interaction kernel, and ϵ denotes additive noise
accounting for model-system discrepancies. NAO introduces a critical component: a kernel map con-
structed via attention. This kernel map estimates the nonlocal kernel based on both input h and output
g, enabling the model to capture global context across physical states.

Herein, we take h as the latent variable field Hm+1 together with the loading fields F, and g as the
prediction of the next time step Xm+1. The latent variable field Hm+1 is constructed by passing the tem-
poral features from the transformer encoder through a projection layer that reshapes them onto the spa-
tial mesh, ensuring that each location yk contains a d-dimensional embedding summarizing the sys-
tem’s past temporal dynamics. The loading field F is obtained directly from known external forcings
or boundary conditions and is aligned to the same spatial discretization for compatibility in the NAO
mapping.
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The latent variable and loading fields are discretized over the spatial mesh {yk}Nk=1 as

H1:d =
(
Hj (yk)

)
1⩽j⩽d, 1⩽k⩽N

,

F1:d =
(
Fj (yk)

)
1⩽j⩽d, 1⩽k⩽N

,
(12)

where d denotes the number of feature channels at each spatial location yk, such as the dimensions of
the latent embedding vector and the loading fields, ensuring that H1:d and F1:d fully represent all relevant
channels of the system.

The overall process in NAO iteratively transforms an initial state

J0 = (H1:d, F1:d)

through T steps, each applying attention with residual connections:

Jt = Attn(Jt−1;θt) Jt−1 + Jt−1, 1⩽ t⩽ T, (13)

where at each iteration we explicitly maintain the same block structure

Jt =
(
H(t)

1:d, F
(t)
1:d

)
(14)

with H(t)
1:d the updated latent variables after t steps and F(t)1:d the corresponding loading fields.

Here

Attn [J;θt] = σ
(

1√
dk
JWQt (WKt)

⊤ J⊤
)
. (15)

After T steps, we form the learned kernel via a kernel map:

K [H1:d, F1:d; θ] =WP,hσ
(

1√
dk
(JT)

⊤ WQT+1

(
WKT+1

)⊤
JT
)

+WP,fσ
(

1√
dk
(FT)

⊤ WQT+1

(
WKT+1

)⊤
JT
)
.

(16)

Here, θ = {WP,h,WP,f,WQt ,WKt} collects all the trainable weight matrices used in the kernel map. and
compute the output

Xout
1:d (y) =

ˆ
K [H1:d, F1:d] (y,z) F1:d (z) dz. (17)

In this architecture, θ = {WP,h,WP,f,WQt ,WKt} are trainable, WQt ,WKt are query/key matrices, σ is
a linear activation function following the suggestions in Cao (2021), Yu et al (2024), Lu and Yu (2025).
WP,h and WP,f are projection matrices that map the attention outputs to the latent variable channel H
and the loading field channel F, respectively, enabling separate handling of spatial interactions from the
latent and forcing components. To optimize θ, we minimize the training loss across all S systems:

L=
S∑

η=1

∥∥∥ˆ K [H1:d, F1:d] (y,z) F1:d (z) dz− Xout,true
1:d (y)

∥∥∥2
L2
. (18)

Here, Xout,true
1:d (y) denotes the ground-truth target measurements of the output field from the dataset for

each system η, and for full notational clarity the norm may be written as

∥∥ˆ K [H1:d,F1:d] (y,z) F1:d (z) dz− Xout,true,(η)
1:d (y)

∥∥2
L2

(19)

making the dependence on η explicit. The NAO thus models nonlocal spatial interactions via a data-
dependent kernel on the latent space H, capturing complex system states S across diverse PDEs and
enhancing generalizability.
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Figure 1. The ASNO framework with the transformer encoder for capturing temporal dependencies and the Non-Local Attention
Operator (NAO) for modeling spatial interactions, following a backward differentiation formula (BDF) approach.

3.4. ASNO: summary and algorithm
The ASNO architecture combines the transformer encoder and the NAO to effectively capture both tem-
poral and spatial dependencies in complex spatio-temporal data, as shown in figure 1.

As the transformer encoder processes the past observations and outputs the latent variable Hm+1

using equation (9), Hm+1 is fed into the NAO to provide the temporal information. This process can
be represented as:

Xout
m+1 =NAO(Hm+1, Fm+1)

=NAO(TE(Xm,Xm−1, . . . ,Xm−n+1) , Fm+1)

= ASNO(Xm,Xm−1, . . . ,Xm−n+1, Fm+1) .

(20)

Since the temporal information is compressed into a latent representation by the transformer
encoder, and the NAO leverages it to learn spatial relationships, the combination of the two modules
allows ASNO to learn spatio-temporal dependencies. The transformer encoder and NAO are jointly
trained with a loss function that optimizes the model’s ability to capture complex dependencies effi-
ciently, making it adaptable to a wide range of scientific machine-learning tasks.

4. Experiments

In this section, we evaluate ASNO’s performance on case studies involving chaotic systems and spatio-
temporal PDEs, each chosen to illustrate its strengths in capturing complex dynamical behaviors crucial
to SciML.

4.1. Learning a PDE solution operator for darcy flow
We evaluate ASNO on a dynamic Darcy flow equation, which models fluid flow through porous media
and exhibits complex spatio-temporal dynamics. On a square domain Ω := [0,1]2, The governing
equation writes:

∂p(t,x)

∂t
−∇ · (b(x)∇p(t,x)) = g(t,x) , x ∈ Ω, p(x) = 0, x ∈ ∂Ω. (21)

In this context, we aim to learn the solution operator of Darcy’s equation and compute the pressure field
p(t,x), given the source field g(t,x) and the underlying permeability field b(x). In our dataset, both the
pressure field p(t,x) and the source field g(t,x) are explicitly available, while the permeability field b(x)
is treated as a hidden parameter field that varies between samples and influences the dynamics impli-
citly. The training dataset consists of 100 time-series profiles on a 21× 21 grid, each with 100 timesteps.
Here, each profile is determined by a different hidden microstructure field b(x). Input-output pairs are
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generated via a sliding window of five consecutive timesteps (i.e. stride 1), yielding 96 samples per pro-
file. We apply 20 random permutations per trajectory, resulting in 153 600 training samples and 38 400
test samples (80:20 split). All baseline models (FNO, U-Net, Transolver, GNOT, DeepONet, transformer
encoder, transformer encoder + NAO) use the same inputs: the past five states Xm−4, . . . ,Xm and the
current forcing field Fm, where the state Xm represents the pressure field at time step m and the for-
cing field Fm encodes the source or sink terms influencing fluid flow at each spatial location. For repro-
ducibility, in our Darcy flow experiments we configure the transformer encoder with an embedding
dimension dembed = 882, nheads = 441 attention heads, nlayers = 3 encoder layers, and dropout probab-
ility 0.1. The NAO is instantiated with nblocks = 2 iterative attention layers, each using a single head
(r= 1) with key/query dimension dk = 50, and projection matrices WP,h,WP,f mapping to the output
grid size S2 = 441. We train all models using the Adam optimizer with initial learning rate lr= 3× 10−3,
weight decay wd= 10−2, and a StepLR scheduler that decays the learning rate by a factor of 0.7 every
100 epochs. Training runs for 25 epochs with batch size equal to the number of random permutations
(nrandperm = 20), and we minimize a mean-squared-error loss implemented via our custom LpLoss. All
experiments fix the random seed to 0 for reproducibility. Additionally, we conducted a sensitivity ana-
lysis to examine how the choice of key hyperparameters, specifically the temporal window size n and
the number of attention steps T, influences both predictive performance and computational cost. Our
findings indicate that increasing n generally improves short-term prediction accuracy by providing richer
temporal context, but also increases memory usage and training time. Similarly, increasing T enhances
the model’s ability to capture long-range dependencies in spatial interactions, though with diminish-
ing returns beyond a certain point and higher computational overhead. These trends suggest a trade-
off between accuracy and efficiency, and the reported configuration reflects the best balance identified
through preliminary experiments.

Table 1 compares the number of trainable parameters, GPU memory usage, test loss on the standard
test set, and out-of-distribution (OOD) test losses for two variants of OOD data. Here, OOD refers to
inputs whose underlying distributions differ from those seen during training. In our case, the OOD-
f set uses time-varying source fields drawn from a different Gaussian random field (GRF) distribu-
tion than the training set, where a GRF is a spatial stochastic process in which the field values at any
set of locations follow a joint Gaussian distribution, fully characterized by its mean function and cov-
ariance kernel. In this work, the GRF is generated using a stationary covariance function of the form
C(r) = σ2 exp

(
−
(
r
τ

)α)
, where α> 0 controls the smoothness of the field, τ > 0 is the correlation length

scale controlling the rate of spatial correlation decay with distance r, and σ2 is the variance. Larger val-
ues of α lead to smoother variations, while smaller τ values produce fields with more rapidly vary-
ing spatial patterns. Specifically, while training samples use source functions g(t,x) drawn from a GRF
with fixed hyperparameters α= 2 and τ = 3, the OOD-f samples are generated by modulating these
GRFs with a sinusoidal time component and scaling their amplitudes by a factor of 200. In particular,
the source term evolves over time as g(t,x) = g̃(x) · sin(t), where g̃(x) is the spatial GRF realization and
t= q∆t is the temporal index with ∆t= 5× 10−5. This construction introduces a dynamic temporal
structure not present in the training distribution, thereby altering both the spatial and temporal char-
acteristics of the source field. Meanwhile, the OOD-b set modifies the spatial distribution of the per-
meability field b(x), which is a crucial hidden input in Darcy flow. While the training set uses binary
bi-phase microstructures generated from a GRF with parameters αχ = 4 and τχ = 5, the OOD-b set
uses a rougher, higher-frequency microstructure generated from a GRF with αχ = 7 and τχ = 6. This
change leads to sharper, more fragmented phase boundaries and higher heterogeneity in the underly-
ing permeability, directly impacting the operator’s ability to generalize to previously unseen flow geo-
metries. Generalizability is quantified by the extent to which the test loss increases on these OOD sets
compared to the standard test set: smaller increases imply better robustness. ASNO achieves the lowest
best and OOD test losses with a comparative number of trainable parameters among the neural-operator
baselines, indicating the strongest OOD generalization with respect to both types of distributional shifts.

ASNO not only provides a high-performing predictor but also reveals underlying physical mechan-
isms through its learned representations. Its separable design helps to learn the implicit-explicit decom-
position of backward differentiation formulas. Moreover, its modular structure enhances interpretability
by allowing independent analysis of temporal and spatial contributions to the final prediction. To illus-
trate this, we compared the temporal predictions of the transformer encoder component with a classical
BDF5 numerical approximation:

X̃m =
12

137
Xm−5 −

75

137
Xm−4 +

200

137
Xm−3

− 300

137
Xm−2 +

300

137
Xm−1 , (22)

9



Mach. Learn.: Sci. Technol. 6 (2025) 045036 V Karkaria et al

Table 1. Performance of different models on Darcy flow and Darcy OOD test sets.

Model Trainable Params GPU (MB) Best test loss Best OOD-f Best OOD-b

ASNO 760 234 181 0.0368 0.0673 0.0982
FNO 900 224 214 0.0768 0.1129 0.1892
U-Net 820 994 123 0.1150 0.1523 0.2224
Transolver 810 573 422 0.0428 0.0721 0.1535
GNOT 760 349 208 0.0516 0.0811 0.1729
DeepONet 6230 000 2146 0.0537 0.0826 0.1826
Trans. Enc. 1620 394 173 0.0559 0.0927 0.1736
Linear Enc.+ NAO 720 398 165 0.05 474 0.1245 0.1394

Figure 2. Comparison at Timestep 10 between the transformer encoder latent prediction (Hm+1), the BDF approximation
(X̃m+1), and the final ASNO output. The latent prediction aligns closely with the BDF estimate, while the NAO refines it using
spatial field corrections.

showing that the learned latent representation Hm closely matches this high-order temporal extrapolation
(see figure 2). For the spatial interactions captured by the NAO, we compared the learned kernel with a
theoretical kernel derived from the Darcy discretization. Starting from

X̃m = Xm +
60

137
∆t (AXm + Fm) , (23)

one obtains

Xm =
(
I+ 60

137 ∆tA
)−1 (

X̃m − 60
137 ∆tFm

)
, (24)

Ktrue =− 60

137
∆t

(
I+ 60

137 ∆tA
)−1

. (25)

Figure 3 compares the ground-truth kernel and the learned kernel from the NAO component, show-
ing good agreement between the two. Additionally, the cumulative loss over time for various models
illustrates that NAO outperforms existing methods in accuracy. When computing long-term time integ-
ration, each prediction Xpred

t is fed back as an input for the next step, so errors accumulate over success-
ive rollouts. We observe that the error growth in the cumulative loss curves proceeds approximately lin-
early over time, which we attribute to the autoregressive nature of the rollout, where prediction errors in
both the state variable X and the forcing term F (when applicable) propagate forward step-by-step. Since
F is provided at each step from ground-truth measurements in our current setup, there is no additional
compounding error from F itself; rather, the slope reflects the steady accumulation of state-prediction
inaccuracies. The cumulative loss-also referred to as long-term time integration -is computed as

ET =
T∑

t=1

∥∥Xtrue
t −Xpred

t

∥∥
L2
, (26)

where Xtrue
t and Xpred

t denote the ground-truth and predicted states at timestep t. This confirms that the
spatial mechanism captured by NAO effectively reflects the physical structure of the underlying PDE
and maintains strong predictive performance across timesteps. While our current experiments assume
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Figure 3. Left: Cumulative error over time for various models on the Darcy flow benchmark, illustrating ASNO’s long-term sta-
bility. Right: Comparison between the ground-truth Darcy kernel and the spatial kernel learned by the nonlocal attention oper-
ator (NAO), demonstrating alignment with the underlying physics.

uniform timesteps for consistency across benchmarks, the ASNO framework is also capable of learning
from non-uniform temporal grids by incorporating continuous-time positional encodings or explicit ∆t
embeddings into the transformer encoder, enabling it to model temporal dynamics as a function of vari-
able time gaps.

These results show that ASNO balances predictive accuracy, interpretability, and computational cost,
and maintains stable performance even under variations in forcing and permeability.

4.2. Chaotic ODE: Lorenz system
In this section, we evaluate the performance of ASNO on the Lorenz system, a well-known nonlinear
dynamical model featuring high sensitivity to initial conditions:

∂x

∂t
= σ (y(t)− x(t))+ g1 (t) , (27)

∂y

∂t
= x(t)(ρ− z(t))− y(t)+ g2 (t) , (28)

∂z

∂t
= x(t)y(t)−βz(t)+ g3 (t) . (29)

Here, our goal is to learn the evolution operator of the Lorenz chaotic ODE system and accurately fore-
cast the future state vector X(t) given its past temporal history and external forcing parameters. In this
setting, X(t) corresponds to the full set of coupled state variables in the Lorenz model, while there is
no F(t) The dataset consists of 2000 time-series profiles with 100 different coefficients combinations
(σ,ρ,β), 20 different loading functions (g1,g2,g3), and the same initial conditions (x(0),y(0),z(0)) =
(0,1,0). Each profile contains 1000 timesteps. 80% profiles are used for training and 20% are for testing.
To construct input-output pairs, we apply a sliding window of length 5 that moves at every timestep,
yielding 996 windows per profile (from t= 1 through t= 996); we discard the final partial window to
obtain 995 samples per profile. To improve model generalization and robustness, we augment the data
by permuting the order of entire 5-step windows within each trajectory, rather than shuffling indi-
vidual timesteps, which preserves local temporal structure while increasing data diversity, and by ran-
domly permuting the profile indices to avoid overlap between train and test sets. This results in a total
of 80× 995× 20= 1592000 training samples and 20× 995× 20= 398000 testing samples without leak-
age. For reproducibility, in our Lorenz system experiments the transformer encoder is configured with
embedding dimension dembed = 20, number of attention heads nheads = 2, number of layers nlayers = 3,
and dropout probability p= 0.1. The NAO is instantiated with nblocks = 3, a single attention head (r= 1),
key/query dimension dk = 10, and projection matrices mapping to the 3-dimensional state. We train
on 90 trajectories (of length 1000) with 20 random permutations each (total batch size 100), using
the Adam optimizer with initial learning rate lr= 10−2, weight decay wd= 10−5, and a StepLR sched-
uler (decay factor γ= 0.7 every 100 steps). Training runs for 10 000 epochs with fixed random seed 0
to ensure full reproducibility. ASNO is compared against five baselines (Transolver, DeepONet, trans-
former encoder, GNOT, and Linear Model + NAO), all trained under identical input formats: each
model receives the five previous states {Xm−4, . . . ,Xm} as well as the current forcing Fm. We did not
include architectures such as U-Net, FNO, and GNOT in our Lorenz comparison due to architectural
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Table 2. Comparison of ASNO and baselines models on the Lorenz system.

Model type Trainable params GPU (MB) Best Test Loss

ASNO 258 808 76 0.000 794
Transolver 395 907 95 0.000 835
DeepONet 265 512 79 0.001 750
transformer encoder 257 647 71 0.001 821
GNOT 401 155 106 0.002 189
Linear Model+ NAO 305 776 87 0.005 298

Figure 4. Long Time prediction comparison of Predicted vs. true time-series trajectories (x,y,z) for models listed in table 2 on
the Lorenz system.

mismatch: U-Net is designed for high-dimensional spatial grids and relies on convolutional down-/up-
sampling; applying it to a low-dimensional ODE time series forces unnatural reshaping and often leads
to over-smoothing of the rapid state changes characteristic of chaos. FNO similarly assumes a spatial
Fourier basis-its global spectral filters excel for PDEs on regular meshes but provide little benefit (and
much overhead) when modeling three-dimensional trajectories in (x,y,z). GNOT builds in geometric
gating layers that require constructing a graph or manifold structure even for these 3-variable ODEs,
adding implementation complexity and extra hyperparameters with little payoff. The results in table 2
show that ASNO achieves the lowest test loss (0.000 794), demonstrating its predictive accuracy on this
chaotic system.

By emulating an implicit-explicit BDF scheme, ASNO first employs a Transformer encoder to extra-
polate the homogeneous (linear) dynamics from the past n states, thereby capturing dominant temporal
modes and the system’s exponential divergence rate without interference from nonlinear feedback. The
Nonlocal Attention Operator then applies a compact learned kernel to introduce the corrective coup-
ling terms (e.g. the products xy, xz), focusing exclusively on rapid cross-variable interactions. This two-
stage decomposition lightens the representational load on each module: the transformer encoder solves
a multistep linear recurrence, while the NAO specializes in a small nonlinear correction. As a result,
ASNO achieves more stable long-term rollouts in the chaotic regime-small errors in one stage do not
immediately amplify in the other-and empirical trajectories adhere much more closely to the true Lorenz
attractor, especially in the sensitive y and z directions, than do those from monolithic models. For long-
term rollouts, each new prediction is generated by feeding ASNO’s previous output back into the model
as the next input, mirroring an autoregressive integration scheme. Figure 4 shows ASNO’s predictions
remaining near the ground truth over many steps, whereas the other baselines exhibit deviation as of
earlier timesteps. By cleanly separating temporal forecasting from coupling correction, ASNO is able to
achieve improved long-term stability and robustness-properties that are particularly desirable for chaotic
forecasting tasks in climate science, physics simulations, and real-time control.

4.3. Navier–Stokes benchmark for PDE testing
To assess ASNO’s efficacy on complex PDEs, we evaluate it on the two-dimensional (2D) incompressible
Navier–Stokes (NVS) equations in vorticity form.

In this context, our goal is to learn the solution operator of the 2D incompressible Navier–Stokes
equations and predict the velocity field u(t,x) given the external forcing field f. Here, X represents the
velocity field at time t and F(t) denotes the spatio-temporal forcing field driving the flow. The governing
equation is given by

∂ω

∂t
+u ·∇ω = ν∆ω+ f, with ∆ψ =−ω, u=

(
∂ψ

∂y
, −∂ψ

∂x

)
,
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Table 3. Performance of models on Navier–Stokes equations: model complexity, GPU memory, and best test loss.

Model
Trainable

params (M) GPU (MB) Best test loss

ASNO 4.66 880 0.0213
Transolver 4.14 911 0.0234
GNOT 5.25 1024 0.0322
DeepONet 5.10 3100 0.0921
Trans. Enc. 5.19 961 0.0967
FNO 4.10 846 0.1186
U-Net 5.02 991 0.1940
Linear Encoder+ NAO 4.05 791 0.0328

Figure 5. Left: Cumulative error comparison across models listed in table 3 on the Navier–Stokes benchmark. ASNO demon-
strates minimal error growth over time, indicating long-term stability. Right: Visualization of predicted versus ground-truth
velocity fields, showcasing ASNO’s ability to recover fine-scale flow structures.

where ω is the scalar vorticity in 2D, u= (u,v) is the velocity field, ψ is the streamfunction, ν is the vis-
cosity, and f is the external forcing function. This benchmark tests ASNO’s ability to capture nonlinear
interactions and multi-field dependencies, following the setup in Li et al (2020a). The dataset consists of
100 simulated time-series profiles, each with a spatial resolution of 30× 30, governed by varying viscos-
ity coefficients ν ∈ [10−4,1], and subject to a forcing term-driven velocity field. Each profile contains 100
temporal snapshots with a time step size of ∆t= 10−2. To construct training and testing data, a slid-
ing window of length 5 and stride 1 is used, resulting in 96 samples per profile. Additionally, we apply
20 random permutations per trajectory to increase diversity and simulate realistic variations in flow
dynamics. This yields 80× 96× 20= 153600 training samples and 20× 96× 20= 38400 testing samples.
These settings create a comprehensive dataset for evaluating ASNO’s generalization and stability in mod-
eling high-dimensional, nonlinear fluid systems. For reproducibility, in our Navier–Stokes experiments
the transformer encoder is configured with embedding dimension dembed = 100, number of attention
heads nheads = 50, number of layers nlayers = 3, and dropout probability p= 0.1. The NAO is instanti-
ated with nblocks = 3 iterative attention layers, each using a single head (r= 1) with key/query dimension
dk = 50, and projection matrices WP,h,WP,f mapping to the 30× 30 output grid (S2 = 900). We train on
ntrain = 900 trajectories (each of length 100 timesteps) on a 30× 30 mesh, applying nperm = 20 random
permutations per trajectory (batch size = 100), with a 90/10 train/test split. Optimization uses the Adam
optimizer with initial learning rate lr= 3× 10−3, weight decay wd= 3× 10−3, and a StepLR scheduler
(decay factor γ= 0.7 every 100 steps). Training runs for 100 epochs with fixed random seed 0.

Table 3 compares ASNO against state-of-the-art models in test accuracy, efficiency, and parameter
count. ASNO achieves the lower test loss while maintaining computational efficiency. Figure 5 illustrates
cumulative error trends, demonstrating ASNO’s stability over long time horizons. These results confirm
ASNO’s effectiveness in handling high-dimensional, nonlinear PDEs, generalizing across diverse physical
systems with minimal numerical dissipation. Crucially, ASNO’s separable architecture-where the trans-
former encoder approximates the homogeneous (viscous and pressure) evolution through a high-order
multistep forecast and the Nonlocal Attention Operator captures the advective and coupling interactions
spatially-reduces the representational burden on each component. By isolating the stiff linear dynamics
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from the convective nonlinearities, ASNO attains both greater numerical stability and sharper resolu-
tion of fine-scale flow structures than monolithic models. Building on ASNO’s success in modeling high-
dimensional, nonlinear PDEs like the Navier–Stokes equations, we extend its application to real-world
engineering challenges.

4.4. Melt pool temperature field prediction in additive manufacturing (AM)
In this section we present a case study on DED AM processes where the goal is to predict the evolution
of the melt pool temperature field (Gunasegaram et al 2024). In this application-driven case study, our
objective is to learn the thermal field evolution operator in a DED process, enabling accurate prediction
of spatio-temporal temperature distributions from limited past thermal measurements and laser input
parameters. Here, X(t) is the spatial temperature field at time t and F(t) encodes the laser power profile
and scan path information over time. Accurate melt pool prediction is crucial in real-world manufactur-
ing scenarios as small deviations in melt pool temperature can significantly affect part quality. First, to
collect data to train ASNO we employ GAMMA, an in-house developed GPU-accelerated Finite Element
Analysis (FEA) code, for part-scale simulations (Liao et al 2023). The GAMMA simulation follows the
transient heat conduction equation, incorporating the essential partial differential equations (PDEs) that
underpin the DED process:

ρCp (T)
∂T

∂t
+∇· q= 0, (30)

Where T is the temperature (K), ρ and Cp are the density (gmm−3) and the effective specific heat capa-
city (J g−1K−1) of the material, respectively. The heat flux q is given by Fourier’s law:

q=−k∇T, (31)

where k is the thermal conductivity of the material. The boundary conditions in the DED process can be
formulated as:

q · n= −2ηP

π r2beam
exp

(
−2d2

r2beam

)
+σϵ

(
T4 −T4

0

)
+ h(T−T0) , (32)

where η is the absorption coefficient (%), P is the laser power (W), rbeam is the beam radius (mm), and
d is the distance (mm) from the material point to the center of the laser. h is the convection heat trans-
fer coefficient (Wm2 K−1), σ is the Stefan–Boltzmann constant (5.67× 10−8 Wm2K−4), ϵ is the mater-
ial’s emissivity, and T0 is the ambient temperature. In the simulation, elements are activated and incor-
porated into the mesh when the distance between the element’s center and the beam center is less than
the beam’s size.

To generate training data, we first generated 100 different laser power profiles with various com-
binations of laser power Plaser(m) and scanning rate Vscan(m) as process parameters, and then simu-
late the printing process of a thin wall using the GAMMA simulation. The temperature field Tpool(m)
corresponding to the laser location Llaser(m) at each time step m was saved as the training output.
Each temperature field is recorded on a 21× 21 spatial grid, and each profile consists of 730 time
steps. To construct the training data, a sliding window of length 5 and stride 1 was used, resulting
in 730− 5+ 1= 726 samples per profile. A random permutation of 20 per trajectory was applied to
enhance data diversity while preserving temporal locality, yielding a total of 80× 726× 20= 1161600
training samples and 20× 726× 20= 290400 testing samples (based on an 80:20 split). With training
data collected, the ASNO for predicting the melt pool temperature field can be trained by formulating
the prediction based on the processing parameters and the history from the past five steps:

T̂pool (m+ 1) = ASNO(Plaser (m+ 1) ,Vscan (m+ 1) ,

Llaser (m+ 1) ,Tpool (m− 4 :m)
)
.

(33)

The predicted melt pool temperature field from a selected frame is shown in figure 6, compared with the
ground truth result from the GAMMA simulation. For the AM DED case study, we configure the trans-
former encoder with embedding dimension dembed = 100, number of attention heads nheads = 50, num-
ber of layers nlayers = 3, and dropout probability p= 0.1. The NAO uses r= 1 attention head per block,
nblocks = 2, and key/query dimension dk = 20, with projection matrices WP,h,WP,f ∈ R20×900 to map onto
the 30× 30 output grid. We train on ntrain = 41 trajectories (each with ntimesteps = 730) sampled on a
30× 30 mesh, applying nperm = 20 random permutations per trajectory (batch size = 100), using the
Adam optimizer (initial learning rate lr= 3× 10−3, weight decay wd= 1× 10−2), a StepLR scheduler
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Figure 6. Prediction results on the DED AM case study with the ASNO prediction on the left, and target results on the right.

(decay factor γ= 0.5 every 100 steps), and minimize a custom Lp loss for 1000 epochs with random seed
0. As a result, the ASNO achieves a mean absolute percentage error of 2.50%. Additional prediction res-
ults of different process input scenarios for AM are provided in appendix.

5. Conclusion

In this paper, we introduce ASNO, a spatio-temporal framework designed to enhance generalizability
and interpretability in modeling time-dependent differential equations. ASNO leverages a separable ker-
nel approach IMEX BDF, enabling to disentangle temporal and spatial interactions to provide insights
on system dynamics. The transformer encoder estimates homogeneous system solutions from histor-
ical states, analogous to the explicit step in BDF, while a neural operator models spatial interactions and
external load impacts. To ensure robust generalization across diverse physical systems, ASNO integrates
the NAO, which facilitates adaptation to varying PDE parameters such as initial conditions, loadings,
and environments. Evaluations on benchmarks including the Lorenz system, Darcy flow equation, Navier
Stokes, and the DED application demonstrate that ASNO outpertforms over the existing models in terms
of accuracy, long-term stability, and zero-shot generalizability to unseen physical parameters. In addition,
ASNO offers interpretability by isolating the influence of temporal and spatial dynamics, revealing how
historical states and spatial loadings contribute to governing behaviors, and aligning predictions with
underlying physical laws. This dual emphasis on generalizability and interpretability makes ASNO suit-
able for real-time decision-making in high-stakes environments, while its attention mechanisms uncover
meaningful patterns for physics-informed discovery and decision-making. Nevertheless, like any data-
driven framework, ASNO has limitations, particularly in low-data regimes where insufficient temporal or
spatial coverage could impact generalization quality. Another promising but unexplored direction is the
adaptation of ASNO to inverse problem settings, where system parameters are inferred alongside state
evolution, which may require additional architectural and optimization considerations. Future research
can extend ASNO’s applications to foundational modeling for transfer learning across different phys-
ical systems, further advancing its role in uncovering and predicting complex physical phenomena in
scientific and industrial domains.
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Appendix. Melt pool temperature field prediction in AM

In this section, we provide a comprehensive analysis of the melt pool characteristics predicted by ASNO
and other comparative models. The melt pool in DED is a key factor in determining material proper-
ties. Accurate modeling of the melt pool helps assess temperature distribution, phase transformation,
and thermal cycles, which directly affect the microstructure and mechanical performance of the final
product. Additionally, understanding melt pool dynamics is essential for process control, defect mitiga-
tion, and ensuring part consistency in DED applications. By comparing ASNO’s predictive performance
with other models, we aim to demonstrate how well it captures these critical characteristics in a manu-
facturing setting.

The simulations were conducted over a 21× 21 spatial grid, with temperature distributions captured
at multiple timesteps throughout the deposition process. In each timestep, the model outputs a 2D tem-
perature field that reflects the temperature variations across the substrate due to the moving heat source.

Figure 7 illustrates these results, showing a side-by-side comparison between ASNO’s model predic-
tions and the target values across three distinct timesteps (10, 25 and 36). The color gradient, repres-
enting temperature from 2000 K to 5500 K, demonstrates the intensity of heat within the melt pool and
the cooling pattern radiating outward from the laser’s path. In each row, the predicted temperature dis-
tribution is shown on the left, directly alongside the corresponding target temperature distribution on
the right, offering a clear visual comparison of ASNO’s accuracy at various time steps. The ASNO results
show good agreement with the target profiles.

These visualizations underscore ASNO’s ability to model high-temperature zones and predict the pro-
gression of thermal profiles over time accurately. Notably, the model predictions retain stability over
longer timesteps, capturing the complexity of the transient heat flow in DED processes. The agree-
ment between the predicted and target distributions suggests that ASNO is well-suited for high-fidelity
simulations in AM applications, where precise thermal predictions are crucial for quality control and
optimization.
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Figure 7. Comparison of ASNO model output and target temperature distributions for the melt pool in directed energy depos-
ition at timesteps 10, 25, and 36. Each row represents a different timestep, with the model output shown on the left and the target
on the right. The color scale indicates temperature in Kelvin, highlighting ASNO’s accuracy in capturing the thermal profile of the
melt pool.
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