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 A B S T R A C T

Digital Twin – a virtual replica of a physical system enabling real-time monitoring, model updating, prediction, 
and decision-making – combined with recent advances in machine learning, offers new opportunities for 
proactive control strategies in autonomous manufacturing. However, achieving real-time decision-making with 
Digital Twins requires efficient optimization driven by accurate predictions of highly nonlinear manufacturing 
systems. This paper presents a simultaneous multi-step Model Predictive Control (MPC) framework for real-
time decision-making, using a multivariate deep neural network, named Time-Series Dense Encoder (TiDE), 
as the surrogate model. Unlike conventional MPC models which only provide one-step ahead prediction, TiDE 
is capable of predicting future states within the prediction horizon in one shot (multi-step), significantly 
accelerating the MPC. Using Directed Energy Deposition (DED) additive manufacturing as a case study, we 
demonstrate the effectiveness of the proposed MPC in achieving melt pool temperature tracking to ensure part 
quality, while reducing porosity defects by regulating laser power to maintain melt pool depth constraints. In 
this work, we first show that TiDE is capable of accurately predicting melt pool temperature and depth. Second, 
we demonstrate that the proposed MPC achieves precise temperature tracking while satisfying melt pool depth 
constraints within a targeted dilution range (10%–30%), reducing potential porosity defects. Compared to 
Proportional–Integral–Derivative (PID) controller, the MPC results in smoother and less fluctuating laser power 
profiles with competitive or superior melt pool temperature control performance. This demonstrates the MPC’s 
proactive control capabilities, leveraging time-series prediction and real-time optimization, positioning it as a 
powerful tool for future Digital Twin applications and real-time process optimization in manufacturing.
1. Introduction

Autonomous manufacturing is essential for achieving efficiency, 
precision, and adaptability in modern production, leading to faster, 
reliable processes through machine learning integration [1,2]. Digi-
tal Twins, an emerging paradigm for manufacturing, serve as virtual 
counterparts of physical systems, facilitating bi-directional interaction, 
prediction, and decision-making under varying operational conditions 
and uncertainties where the digital and the physical systems evolve 
together [3–5]. In manufacturing, Digital Twins enable proactive real-
time decision-making to optimize and control the process under rapid 
changes in operation and uncertain conditions [6,7]. One key element 
of realizing the Digital Twins in manufacturing is to perform real-time 
decision-making using the virtual model, providing proactive control 
actions to ensure part quality. Take additive manufacturing (AM) as 
an example, proactive control approaches, by incorporating process 
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constraints and real-time process feedback, empower AM to anticipate 
and prevent deviations that could lead to defects [8,9], thereby improv-
ing part quality and streamlining the manufacturing process. However, 
constructing a real-time decision-making framework in AM is chal-
lenging due to the complexity and computational requirement of the 
decision-making process and the need for a compatible physics-based 
model [10]. 

Conventional feedback control methods, such as proportional–
integral–derivative (PID) controllers, offer fast and reactive control 
actions and have been widely applied in AM [11], but struggle with 
the dynamic, multi-variate, and stochastic nature of AM processes. PID 
control schemes are typically SISO (single-input single-output) systems, 
meaning they adjust only a single process parameter, such as laser 
power, to achieve a single control objective, like maintaining a specific 
melt pool size or temperature. This approach overlooks the complex 
vailable online 27 March 2025
278-6125/© 2025 Published by Elsevier Ltd on behalf of The Society of Manufactur

https://doi.org/10.1016/j.jmsy.2025.03.009
Received 13 March 2025; Accepted 14 March 2025
ing Engineers.

https://www.elsevier.com/locate/jmansys
https://www.elsevier.com/locate/jmansys
https://orcid.org/0000-0002-9231-0860
https://orcid.org/0000-0003-3733-2415
https://orcid.org/0009-0005-8853-2216
https://orcid.org/0000-0003-1023-5244
https://orcid.org/0000-0002-4653-7124
mailto:weichen@northwestern.edu
https://doi.org/10.1016/j.jmsy.2025.03.009
https://doi.org/10.1016/j.jmsy.2025.03.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmsy.2025.03.009&domain=pdf


Journal of Manufacturing Systems 80 (2025) 412–424Y.-P. Chen et al.
Nomenclature

𝑓 (⋅) Surrogate model of the system
�̂�𝑘 Predicted state at timestep 𝑘
𝑑𝑥, 𝑑𝑦 Distances from the current laser position to 

the nearest geometry boundary along the 
𝑥− and 𝑦−axis

𝐽 (⋅) Objective function for MPC
𝑝 Horizon length
𝑢𝑘 Control input at timestep 𝑘
𝑤 Window size
𝑥𝑘 Actual state at timestep 𝑘
𝑧 𝑧−coordinate of the laser nozzle position
AM Additive Manufacturing
DED Directed Energy Deposition
DNN Deep Neural Network
MPC Model Predictive Control
NN Neural Network
TiDE Time Series Dense Encoder

interactions between multiple process parameters and their combined 
effects on the final product [1], limiting their applicability in AM. Also, 
PID-based control is considered reactive, as it responds to errors only 
after they occur rather than anticipating and preventing them. For 
example, in [12], experimental results show that PID control fails to 
maintain melt pool width stability, leading to geometric inaccuracies. 
This is largely because PID controllers use fixed parameters throughout 
the build process, whereas AM conditions change over time due to heat 
accumulation. As a result, a single optimal set of controller parameters 
cannot be maintained for the entire process. In addition, they do not 
inherently account for constraints (e.g., physical limits on actuators or 
process variables), especially when multiple parameters or changing 
conditions are involved [1].

In contrast, model predictive control (MPC) is gaining popularity for 
its ability to predict future behaviors, optimize control inputs for multi-
input multi-output (MIMO) systems, and handle constraints [13–15], 
which is a crucial feature for proactive defect mitigation [1,16]. For 
example, constraints in AM include maintaining a specific melt pool 
temperature while ensuring the melt pool depth remains within a 
defined range. The MPC optimization framework, with its capability of 
state prediction and constraints handling in real-time decision-making 
processes, provides more robust and reliable control solutions [17,18] 
and enables adaptive decision-making in Digital Twins [1,6].

Although MPC has been extensively studied in process control, its 
application in AM for controlling melt pool features is still limited. 
Specifically, significant gaps remain in the demonstration of effective 
constraint handling for quality control that builds on the accurate 
nonlinear surrogate modeling of the AM system while supporting the 
solving speed/latency of the MPC. Most existing approaches use linear 
state-space models and transfer functions derived from system iden-
tification (ID) methods [19–21]. While the analytical solutions for 
optimal control problems can be obtained, e.g., using linear quadratic 
regulator (LQR), they often struggle to capture AM’s highly nonlinear 
dynamics without considering constraints. This restricts MPC in AM 
to operate under limited conditions, e.g., the model is only accurate 
in one layer [21]. To address this limitation, one solution is to use 
multiple linear models to approximate different behaviors under vary-
ing conditions [21]. While experimentally validated, these approaches 
demonstrate control capabilities mainly under steady-state conditions 
due to the high variability of melt pool dynamics. Aside from system 
ID methods, Cao et al. proposed a simplified semi-ellipse approximation 
for melt pool control, using MIMO robust MPC to adjust laser power 
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and scanning speed [22]. Although this model accounts for more 
physics, its first-order approximation may not fully represent the com-
plexities of heat distribution and dissipation. Also, similar to the PID 
controllers, the linear model representations limited their adaptability 
to changing conditions where the system dynamic may vary drasti-
cally. In fact, embedding all relevant physics into a real-time model is 
nearly impossible due to unobservable states and parameter estimation 
challenges. Given the success of machine learning (ML), data-driven 
methods offer a promising alternative for AM, capturing nonlinear 
dynamics, and enabling the MPC to mitigate defects proactively.

The rise of ML and deep neural networks (DNN) has fueled interest 
in data-driven approaches for MPC, allowing for nonlinear system iden-
tification and robust control [23]. These models offer flexibility and 
require fewer assumptions, making them useful across many engineer-
ing applications [24–28]. However, most applications use state-space 
models to represent the dynamic controlled systems. State-space mod-
els, even with nonlinear identification [29], need the assumption of 
fully observable systems, which presents a challenge in AM in practice. 
In addition, they often oversimplify the dynamics by treating systems 
as Markov processes whose future state of a system depends only on 
its present state and not on its past states. Autoregressive models, by 
including a longer history of the past states, capture complex, long-
term dependencies and provide additional information as compensation 
for partially observable systems [30–32]. This feature is better suited 
for complex systems like AM [32], as they learn both dynamics and 
predict states more effectively. On the other hand, unlike one-step 
predictive models that require costly recursive rollouts for the MPC, 
simultaneous multi-step MPC, first proposed by Park et al. [33], with 
sequence output, provides one-shot predictions for future states simul-
taneously across the entire horizon, significantly improving both speed 
and accuracy. Thus, in this work, we aim to explore the full potential of 
integrating time-series models with AM, not only to learn the complex 
system dynamics, but also to develop an efficient MPC framework that 
mitigates defects proactively.

In this study, we present a simultaneous multi-step MPC framework 
using a time-series DNN as a proof of concept of real-time decision-
making for manufacturing systems, using Directed Energy Deposition 
(DED) AM as our case study. However, we envision that this method 
can be generalized for similar manufacturing processes such as welding. 
The framework dynamically regulates laser power to maintain the 
target melt pool temperature while satisfying constraints on melt pool 
depth. As shown in Fig.  1, a multi-variate time-series model, named 
Time Series Dense Encoder (TiDE) [34], is first trained offline to predict 
melt pool temperature and depth, serving as the surrogate model for 
the MPC. During the online MPC, a constrained optimization problem 
is solved to compute the optimal sequence of control inputs that mini-
mize the temperature tracking error while satisfying depth constraints. 
The first element of this sequence is applied to the physical system, 
where the powder deposition and melting process are represented by 
simulation based on a finite element analysis (FEA) code in this work, to 
execute the control action. Then, the resulting melt pool temperature 
and depth are extracted and fed back into the MPC, completing the 
closed-loop control process.

The major contributions of this work include:

• We propose a multi-step MPC framework for realizing the real-
time decision-making of the Digital Twin concept that leverages 
a time-series-based deep learning model using the AM system as 
an example. The multi-step output model structure along with 
automatic differentiation, accelerates the MPC and enables fast 
solutions for real-time optimization.

• We demonstrate the use of a multi-variate physics-based time-
series deep learning model for predicting critical local behav-
iors in manufacturing systems, and it is capable of accurately 
forecasting states across the prediction horizon in a one-shot 
manner.
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Fig. 1. System overview of the proposed multi-step MPC framework for DED, where 𝐽 is the cost function, 𝑤.𝑟.𝑡 denotes ‘‘with respect to’’, 𝑠.𝑡. denotes ‘‘subject to’’, and 𝑔𝑖
represents the 𝑖th constraint.
• We demonstrate effective constraint handling directly on state 
observations in DED, providing a proactive approach to mitigate 
defects.

The remainder of the paper is structured as follows: Section 2 pro-
vides an overview of the technical background on time-series modeling 
and the MPC, while Section 3 covers the thermal simulation model. In 
Section 4, we outline the data preparation process for model training, 
followed by the development of the multi-step MPC in Section 5. 
Section 6 presents and discusses the results and comparisons, and we 
conclude the paper in Section 7.

2. Technical background

2.1. Model predictive control

Model Predictive Control (MPC), also known as receding horizon 
control, is an advanced control technique that uses a model of the 
system to predict its future behavior and optimizes control actions 
by solving a finite-horizon optimal control problem at each sampling 
instant [13], as illustrated in Fig.  2. In standard MPC, once the control 
sequence is solved at the current step, the first action is applied to the 
plant, and the process is repeated as the system advances to the next 
step with updated observations. Assuming the prediction horizon is 𝑝, 
the MPC to optimize future control inputs 𝐮 given the current state 𝐱𝑘
at current time 𝑘 can be formulated as: 

min
𝐮=[𝐮𝑘 ,…,𝐮𝑘+𝑝−1]

𝐽 (𝐮, 𝐱𝑘) =
𝑝−1
∑

𝑖=0

[

‖𝐱𝑘+𝑖‖2𝐐 + ‖𝐮𝑘+𝑖‖2𝐑
]

, (1a)

𝑠.𝑡. �̂�𝑘+𝑖+1 = 𝑓 (�̂�𝑘+𝑖,𝐮𝑘+𝑖), ∀𝑖 ∈ N[0,𝑝], (1b)

𝐱𝑘+𝑖 ∈ X, ∀𝑖 ∈ N[0,𝑝−1], (1c)

𝐮𝑘+𝑖 ∈ U, ∀𝑖 ∈ N[0,𝑝−1], (1d)

 where ‖𝐱‖2𝐐 = 𝐱⊤𝐐𝐱 represents the quadratic operation of state vector 
𝐱, the weighting matrices 𝐐 ≻ 0 and 𝐑 ≻ 0 are symmetric. Eq.  (1b) is 
the general representation of the dynamic equation in which 𝑓 is the 
predictive model, and Eqs. (1c) and (1d) are the constraints of states 
and control actions, respectively.
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Fig. 2. Illustration of MPC with the moving horizons step-by-step.

2.2. Time series model: Time Series Dense Encoder (TiDE)

When selecting an appropriate predictive model for the MPC using 
the time series DNN, two key considerations are essential: (1) The 
inference speed as MPC requires multiple function evaluation in each 
iteration. (2) The data format that is compatible with the DED. In this 
work, we selected Time Series Dense Encoder (TiDE) [34], a residual 
neural network (ResNet) specifically designed for multi-variate time 



Journal of Manufacturing Systems 80 (2025) 412–424Y.-P. Chen et al.
Fig. 3. Network structure of TiDE.
Source: Modified from [34].
series forecasting, due to its efficiency and accuracy, as shown in 
Fig.  3. Its residual connection feature allows it to capture long-term 
dependencies of the history without vanishing gradient. Moreover, it 
utilizes a dense coder to extract key features from input data, acting as 
a filter to enhance the resilience of the model against disturbances in 
state feedback. TiDE operates in linear time complexity, making it faster 
than other DNN-based time-series models like RNNs, which require 
recursive rollouts for sequence output, and Transformer-based methods, 
e.g. PatchTST [35], which involve a minimum 𝑂(𝑛2) complexity due to 
self-attention mechanisms [34]. Moreover, TiDE exhibits strong predic-
tive performance in several benchmarks [34] and can quantify aleatoric 
(data) uncertainty in a one-shot manner using Gaussian or quantile 
regression [36]. Note that different from our previous work [7] where a 
Bayesian LSTM is proposed to predict the complete temperature profile 
for the whole part for offline optimization, in this work, TiDE model 
is an accurate representation of local system behavior, which is more 
suitable for the MPC.

The data format that TiDE requires also matches our system as its 
capability of handling covariates is a critical feature of TiDE in surro-
gating dynamical systems and MPC applications, which cannot be seen 
from either the conventional Transformer Encoder or PatchTST. This 
feature is crucial for surrogating dynamical control systems because 
the prediction output 𝑠ℎ𝑜𝑢𝑙𝑑 condition on the future inputs. For TiDE, 
not only the past states but also the future control inputs and the 
geometry variables, as a form of dynamic covariates, are treated as 
predictive inputs to provide rich information on forecasting the future 
states (target) in a one-shot manner. This is a significant advantage 
over some sequence-to-sequence models that do not support future co-
variates, (e.g. Transformer encoders, Long Short-Term Memory (LSTM), 
N-BEATS [37]) where the user has to mask out future responses to 
structure the data into a compatible format [33] and not fulfilling 
the whole potential of the model. The structure of the model input, 
predictive target, and the role of geometric information as covariates 
will be elaborated in Section 4.4.
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In addition, TiDE’s embedding structure, realized through dense en-
coders and decoders, enhances predictions by transforming raw inputs 
into dense, low-dimensional representations that capture meaningful 
patterns and relationships. The encoder reduces data dimensionality, 
encodes complex interactions, and improves the model’s ability to 
generalize across unseen examples. The dimensionality-reduced em-
beddings also function as noise filters by identifying and embedding 
only the most relevant features in the latent space. By effectively 
compressing input information, these embeddings mitigate the risk of 
overfitting, particularly in high-dimensional datasets. For time-series 
data, embeddings efficiently represent temporal attributes or categor-
ical features, allowing TiDE to extract richer patterns and improve 
prediction accuracy.

3. Thermal simulation model

3.1. Explicit finite element solver

In this work, an in-house developed explicit FEA code is em-
ployed for part-scale transient heat transfer simulations of the DED 
process [38]. The code, named GAMMA, is implemented in Python 
with temperature-dependent material properties and accelerated by 
GPU computation using CuPy 9.0.0 [39]. The heat transfer model is 
based on Fourier’s law of heat conduction, with the governing equation 
expressed as: 

𝜌𝐶𝑝(𝑇 )
𝜕𝑇
𝜕𝑡

= 𝑘(𝑇 )∇2𝑇 + 𝑞laser + 𝑞conv + 𝑞rad, (2)

where 𝑇  is the temperature (K), 𝜌 is the material density (g∕mm3), 𝐶𝑝(𝑇 )
and 𝑘(𝑇 ) are the temperature-dependent specific heat capacity (J∕g∕K) 
and thermal conductivity (W∕m∕K), respectively. 𝑞laser is the heat flux 
(W∕m2) from the laser, and 𝑞conv and 𝑞rad represent the convective 
and radiative heat fluxes (W∕m2). This simulation applies heat flux 
boundary conditions, including a laser surface flux boundary condition 
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𝑞laser to represent heat provided from a Gaussian laser beam applied to 
only the top surface of elements, since the laser is projected from the 
top-down, expressed as: 

𝑞laser =
−2𝜂𝑃
𝜋𝑟2beam

exp

(

−2𝑑2

𝑟2beam

)

, (3)

where 𝜂 is the absorption coefficient (%), 𝑃  is the laser power (W), 
𝑟beam is the beam radius (mm), and 𝑑 is the distance (mm) from the 
node to the center of the laser. Additionally, boundary conditions for 
convective heat loss 𝑞conv and radiative heat loss 𝑞rad are applied to all 
exposed surfaces of the part excluding the bottom substrate surface:
𝑞conv = ℎ(𝑇 − 𝑇0), (4)

𝑞rad = 𝜎𝜖(𝑇 4 − 𝑇 4
0 ), (5)

where ℎ is the convection heat transfer coefficient (W∕m2∕K), 𝜎 is the 
Stefan–Boltzmann constant (5.67 × 10−8 W∕m2∕K4), 𝜖 is the material’s 
emissivity, and 𝑇0 is the ambient temperature. The bottom surface of 
the substrate employs a Homogeneous Dirichlet boundary condition 
to fix displacement and maintain an isothermal temperature at 300 K 
(room temperature): 
𝑇 |𝑧=0 = 𝑇0. (6)

Material deposition is modeled using the inactive element method. 
In the preprocessing stage, the activation time of each element is 
determined based on the predefined toolpath. An element becomes 
active and is incorporated into the mesh when the distance between 
the laser center and the geometric center of the element is smaller than 
the beam diameter 𝑟beam. One can refer to our previous work for more 
details about the FEA model setup [38,40].

3.2. Calibration approach for thermal simulation model

Since GAMMA simulates only heat conduction for part-scale simu-
lations and neglects Marangoni flow, which contributes to convective 
heat dissipation, it overestimates melt pool temperatures compared to 
sensor values—particularly when the temperature exceeds the mate-
rial’s liquidus point. One way to compensate for this is by calibrating 
the material’s artificial thermal conductivity using experimental data 
when an element’s temperature surpasses the liquidus threshold [40,
41], and the effectiveness of this approach has been validated using 
Inconel 718 in our previous work [40]. For simplicity, in this work, 
we multiplied the extracted melt pool temperature by 0.5 to emulate 
a reasonable temperature value, compensating for the overestimation 
of melt pool temperature. This treatment will be refined in our future 
work for 316L. Since the current research scope does not involve real 
physical data as feedback for model predictive control but directly uses 
the GAMMA simulation result to emulate the true physical system, the 
simplistic scaling approach will not affect the demonstration of TiDE 
and MPC’s learning and control capabilities or undermine our method’s 
effectiveness.

4. Data and model preparation

4.1. Target geometry and material

In this work, we chose a single-track square as the target geometry 
made of 316L on a thick substrate of AISI 1018, as shown in Fig.  4 and 
the specifications in Table  1. This part allows the MPC to run for a long 
distance in a straight line before sharp turning and switching layers, 
and the single-track wall on each side allows the verification of melt 
pool depth using the infrared camera. The geometry and mesh were 
generated in ABAQUS CAE 2023. The mesh was comprised of linear 
hexahedral elements (0.375 mm in size). The substrate was partitioned 
to coarsen the mesh outside of the deposition area to reduce the 
number of elements and decrease computational time. A corresponding 
FEA model is built and simulated using GAMMA, and the temperature 
profiles on each node are saved for feature extractions and model 
training.
416
Fig. 4. Single-track square.

Table 1
Specification of printed square.
 Item Quantity  
 Side length 40 mm  
 Track width 1.5 mm  
 Layer height 0.75 mm  
 Num. of layers 10 layers  
 Element size 0.375 mm 
 Num. of elements 40 540  
 Substrate height 10 mm  
 Scanning speed 7 mm/s  

4.2. Feature extraction

We developed an algorithm to extract the target features – melt pool 
temperature and depth – from the temperature profiles of all the nodes 
that belong to the geometry. These two features are considered the 
key to maintaining printing quality and mitigating defects (elaborated 
in Section 5). This algorithm runs one sampling timestep every five 
GAMMA simulation time steps (1 sampling time step = 5 × 0.00714
s/step) to save memory sizes. As the laser location at each sampling 
time step is known, the melt pool temperature can be extracted by the 
following steps, also illustrated in Fig.  5(a):

1. Select the activated nodes that belong to the top layer of the 
current printed geometry (current max laser location).

2. Among the selected nodes, further select the nodes around the 
laser location, i.e., ±3 mm on 𝑥- and 𝑦- directions, centered on 
the laser location.

3. Fit a radial basis function (RBF) surface [42] using the nodes 
selected from the previous step since the selected nodes are 
sparsely distributed. Then, the RBF surface will be interpolated 
with finer mesh grids (0.2 mm) to get a higher resolution of the 
temperature map, reducing the numerical errors induced by the 
coarse meshes.

4. Calculate the average temperature within the scanning radius 
(0.9 mm) around the laser location as the melt pool temperature 
𝑥temp. This approach emulates how coaxial photodiodes measure 
temperature in a physical DED machine as it only calculates the 
mean temperature within its sensing region.

We also developed an algorithm for extracting melt pool depth from 
the simulation. Note that although the in-situ measurement of melt 
pool depth may not be available for most DED machines, it can still be 
obtained via online estimation methods [43–46]. Here, we assume that 
the melt pool depth is accessible in-situ. The algorithm can be detailed 
by the following steps, as illustrated in Fig.  5(b):
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Fig. 5. Feature extraction processes.
1. Select nodes within a cube of size 1.5×1.5×4 mm centered on the 
laser, extending ±0.75 mm on 𝑥- and 𝑦- directions, and −4 mm in 
𝑧- direction.

2. Fit a three-dimensional RBF using the selected nodes from the 
previous step, with its coordinates as input and correspond-
ing temperature as output. Interpolate the RBF with finer grid 
meshes.

3. Extract the melt pool depth by calculating the maximum dis-
tance along the 𝑧-axis for all grid points where the temperature 
exceeds the solidus temperature of 316L. Subtract the clad/layer 
height (0.75 mm in this case) to obtain the final melt pool depth, 
𝑥depth.

Note that the melt pool depth obtained using this algorithm can 
be negative due to the heat conduction simulation, especially in the 
first three layers and at the start of a new layer. In this work, we will 
keep the raw data as it is collected without modifying/clamping the 
negative melt pool depth extractions to reflect the GAMMA simulation 
even though it is different from the experimental setting. The feature 
extraction algorithm will be used in both data collection offline, and to 
emulate the function of the in-situ sensors in the online MPC.

4.3. Data collection

The objective of data generation is to create a series of laser power 
profiles that uniformly span the design space throughout the entire 
printing process. Given the high dimensionality of the laser power pro-
file design space, traditional design of experiments (DOE) methods are 
impractical. To address this issue, we adopted the approach proposed 
by Karkaria et al. [7], which represents each laser power profile using 
10 key parameters. These parameters include the amplitude, number of 
terms, frequency, and phase from the Fourier series approximation, as 
well as the rate of change for the amplitude, frequency, and phase of the 
wave. Additionally, three parameters account for the slope, fluctuation, 
and amplitude of the seasonal component of the laser power time series, 
providing greater flexibility in the representation. This dimensional 
reduction enables the application of DOE with 10 parameters using 
the optimal Latin hypercube sampling method [47]. These designs can 
subsequently be used to reconstruct temperature profiles for the entire 
print process. In this work, 100 laser power profiles are generated using 
this method.
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As the laser power profiles are generated, part-scale simulations of 
the printing process are performed using GAMMA, with the generated 
laser profiles serving as input under ideal, noiseless, open-loop con-
ditions. For convenience, all 100 time series are concatenated into a 
single continuous time series. Key features of interest, such as melt 
pool temperature (𝑥temp) and melt pool depth (𝑥depth), are extracted 
using the aforementioned algorithm and saved as time series profiles 
upon the completion of the simulation. To mitigate the effect of the 
numerical errors introduced during the GAMMA simulation, both melt 
pool temperature and depth are smoothed using the moving average 
method with a window size of four. In addition to these features and 
the laser input (𝑢), three other parameters are recorded at each time 
step: the 𝑧-coordinate of the laser position, and the distances from the 
current laser position to the nearest geometry boundary along the 𝑥-axis 
and 𝑦-axis, denoted as 𝑑𝑥 and 𝑑𝑦, respectively. Each time series profile is 
further divided into snapshots using a moving window approach with a 
step size equal to one. Consequently, each segment has a length of 𝑤+𝑝, 
where 𝑤 represents the window size (i.e., the length of the history) 
and 𝑝 represents the prediction horizon. The resulting data collected 
from this stage are represented as 𝐱𝑖temp ∈ R𝑤+𝑝,𝐝𝑖𝑥 ∈ R𝑤+𝑝, 𝐳𝑖 ∈
R𝑤+𝑝, 𝐱𝑖depth ∈ R𝑤+𝑝,𝐝𝑖𝑦 ∈ R𝑤+𝑝,𝐮𝑖 ∈ R𝑤+𝑝, ∀𝑖 ∈ N[1,𝑁], where 𝑁 is 
the total number of fractions of time series, as visualized in Fig.  6.

Fig. 6. Segmenting training data with moving window.
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4.4. Model training

TiDE is a forecasting model that supports data in a specific time-
series format [34]. In forecasting, a covariate is an external variable that 
influences the target, the quantity to be predicted, but is not the target 
itself, providing context for the predictive model [48]. Past covariates 
are obtained in previous time steps, while future covariates are known 
or estimated inputs affecting future target predictions. This framework 
aligns well with dynamical systems and multi-step MPC, where control 
inputs serve as covariates and observations or states represent the 
target.

In this work, we defined melt pool temperature (𝑥temp, in K) and 
depth (𝑥depth, in mm) as the target, and the distances to part boundaries 
in 𝑥 and 𝑦 (𝑑𝑥, 𝑑𝑦, in mm), laser 𝑧 position (𝑧, in mm), and laser power 
(𝑢, in W) as covariates, as shown in Fig.  7. The relationship between 
covariates and target is represented by:
[

�̂�temp,𝑘+1∶𝑘+𝑝
�̂�depth,𝑘+1∶𝑘+𝑝

]

= TiDE(𝐱temp,𝑘−𝑤+1∶𝑘, 𝐱depth,𝑘−𝑤+1∶𝑘,𝐝𝑥,𝑘−𝑤∶𝑘+𝑝−1,

𝐝𝑦,𝑘−𝑤∶𝑘+𝑝−1, 𝐳𝑘−𝑤∶𝑘+𝑝−1,𝐮𝑘−𝑤∶𝑘+𝑝−1). (7)

A key advantage of TiDE is its ability to directly incorporate both 
past and future covariates, along with past targets, to predict future 
targets. Unlike most generic sequence-to-sequence models, such as 
RNNs, GRUs, LSTMs, and Transformers, which do not distinguish be-
tween covariates and targets and require target masking to align with 
the input format [33], TiDE maintains full predictive power without 
leaving any network parameters idle. While static covariates, shown 
in Fig.  7, are not used in this study, they offer additional flexibility 
for future work, such as encoding different material properties or part 
geometry.

We chose quantile loss [49] as the loss function for our model 
training because it offers several advantages. First, quantile loss is 
less sensitive to outliers than mean square error (MSE) loss, making 
it more robust when dealing with noisy or skewed data. Second, for 
probabilistic learning, in contrast to Gaussian loss [50] which learns the 
mean and variance during training, it does not require any assumptions 
about the underlying data distribution to learn and predict specific 
quantile levels. Moreover, with quantile prediction, it can directly 
quantify aleatoric (data) uncertainty without the need for Monte Carlo 
sampling or Bayesian inference. Although in this work we do not 
consider the uncertainty quantification of the model, the fast prediction 
of data uncertainty makes it well-suited for future applications toward 

Fig. 7. Data structure of the input and output of TiDE, crafted for DED.
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robust MPC. In the rest of the work, we used the predicted median 
(0.5 quantile) as the response prediction. The PyTorch realization for 
both TiDE and quantile loss are modified from [36] to enable automatic 
differentiation.

The general idea of selecting the horizon length is that it should 
be longer than the principle dynamics of the system. In our case, we 
expand this criterion that the horizon should be long enough to predict 
the states across the critical region, e.g., the corner or other geometry 
features where the scanning direction changes dramatically. This is to 
ensure that the MPC can handle extreme scenarios during the printing 
proactively by planning and optimizing the control input several steps 
ahead. The selection of the window size depends on the observability 
and noise of the system. As mentioned in [30], an auto-regressive 
representation for dynamical systems is required when the model is 
not fully observable. In our case, the chosen states are melt pool 
temperature and depth, which are the extracted representations of the 
melt pool dynamics, and might not be enough to accurately represent 
the system and treat it as a Markov Decision Process (MDP) by assuming 
that the system is fully observable. Therefore, an additional history is 
included to provide more information for better predictive accuracy. 
Further, since the past states (collected from the sensor feedback) are 
likely to be noisy due to the system variability and disturbance, the 
model prediction conditioned on a short but noisy history may result 
in greater prediction error as the critical features may be corrupted. 
In contrast, a larger window size will benefit the resilience of the 
prediction because the dense encoder of the TiDE model can filter the 
noise while still keeping critical information from the history, providing 
in-distribution prediction. Still, note that the optimization of 𝑤 and 𝑝
is beyond the scope of this work.

We generated a total of 𝑁 = 640,277 time series segments, each 
with a length of 100, using 𝑤 = 50 and 𝑝 = 50. These were split 
into training/validation sets with a 9:1 ratio. The hyperparameters 
of the multi-variate model (predicting temperature and depth) and 
training setup are detailed in Table  2. We also trained a uni-variate 
TiDE for temperature prediction to compare with the PID controller 
with only 200 epochs. The TiDE model was trained using the Adam 
optimizer with a learning rate scheduler that decays the rate by 5% 
every two steps. Robustness and generality are key priorities dur-
ing training. Since sensor noise and environmental uncertainties can 
corrupt past target data, the model must maintain predictive power 
even when noisy past targets and covariates are used. Additionally, 
smooth predictions of future states are essential for improving the 
MPC performance, even with noisy historical data. To achieve these 
improvements, regularization and dropout techniques were applied. 
For future work, combining experimental and simulation data using the 
co-teaching method [51] may further improve the model generality to 
noisy history. The validation of TiDE will be discussed in Section 6.1.

5. Model predictive control

5.1. Multi-step MPC formulation for DED with constraints

The multi-step MPC for melt pool temperature tracking and con-
straining melt pool depth at time 𝑘 can be formulated as follows: 

min
𝐮𝑓=

[

𝑢𝑘 ,…,𝑢𝑘+𝑝−1
]

𝑝
∑

𝑖=1

[

‖�̂�temp,𝑘+𝑖 − 𝑟temp,𝑘+𝑖‖
2
𝐐 + ‖𝛥𝑢𝑘+𝑖−1‖

2
𝐑

]

, (8a)

𝑠.𝑡. 𝑔1(𝐱) ∶ �̂�depth,𝑘+𝑖 ≥ 𝑥𝑙𝑏depth, ∀𝑖 ∈ N[1,𝑝−1], (8b)

𝑔2(𝐱) ∶ �̂�depth,𝑘+𝑖 ≤ 𝑥𝑢𝑏depth, ∀𝑖 ∈ N[1,𝑝−1], (8c)

[�̂�𝑓+1temp, �̂�
𝑓+1
depth]

𝑇 = TiDE(𝐱𝑝+1temp, 𝐱
𝑝+1
depth,𝐝

𝑝∶𝑓
𝑥 ,

𝐝𝑝∶𝑓𝑦 , 𝐳𝑝∶𝑓 ,𝐮𝑝∶𝑓 ) (8d)

𝑢𝑘+𝑖 ∈ U ∶= {𝑢 ∈ R ∣ 504 𝑊 ≤ 𝑢𝑖 ≤ 750 𝑊 }, (8e)
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Table 2
Hyperparameters of training TiDE model.
 Details for TiDE model setup
 # encoder layers # decoder_layers Decoder output dim. Hidden size Decoder hidden size Dropout rate Layer normalization 
 1 1 16 128 32 0.2 True  
 Details for TiDE model training
 Learning rate Regularization Step_size Rate decay # epoch Batch size Shuffle data  
 0.001 0.001 2 0.95 500 128 True  
where 𝛥𝑢𝑘+𝑖−1 = 𝑢𝑘+𝑖 − 𝑢𝑘+𝑖−1 represents the differences between two 
consecutive terms in the designed future laser power. To simplify the 
notation, we use the superscript 𝑝, 𝑓 , and 𝑝 ∶ 𝑓 to denote the past 
(𝑘 − 𝑤 ∶ 𝑘 − 1), the future (𝑘 ∶ 𝑘 + 𝑝 − 1), and the past and future 
(𝑘 −𝑤 ∶ 𝑘 + 𝑝 − 1), respectively.

In practice, tuning the laser power is essential for ensuring the 
complete melting of the powder and maintaining melt pool temperature 
stability while minimizing the effects of overheating [11]. In this 
work, the purpose of implementing the MPC in DED is to provide a 
proactive control policy that mitigates defects by enforcing melt pool 
depth constraints when an arbitrary reference trajectory for melt pool 
temperature is provided. In DED, porosity is the most common and 
critical defect, directly affecting the mechanical properties of printed 
parts [1,52]. There are two main types of porosity: interlayer porosity, 
typically caused by low dilution, and intralayer porosity, resulting from 
high dilution. To mitigate these defects, it is recommended to maintain 
the melt pool depth within a dilution range of 10% to 30% [52]. 
While offline process optimization can generate melt pool temperature 
references that improve the properties of the fabricated material, it 
overlooks constraining the melt pool depth [7,11]. As a result, it 
potentially leads to the violation of the suggested dilution range during 
implementation, resulting in porosity defects. In such cases, the MPC 
can prioritize part quality over strict temperature tracking. Even when 
melting pool depth constraints are considered offline, the MPC can still 
act as a safeguard to ensure these constraints are consistently met. 
Lastly, although the sensors for in-situ melt pool depth measurements 
are almost unavailable at the current stage, we assume that the melt 
pool depth is observable via inference methods [43–45].

The MPC objective function includes the mismatch between the 
predicted future melt pool temperature and the reference trajectory, 
represented by the sum of square error, as well as the control effort, 
represented by the sum of 𝛥𝑢𝑘+𝑖−1. The two types of loss are balanced 
by the weighting matrices 𝐐 = 𝐈𝑝 and 𝐑 = 10𝐈𝑝 in this work. The 
constraints involve maintaining the melt pool depth within bounds, 
specifically 𝑥𝑙𝑏depth = 0.075 mm and 𝑥𝑢𝑏depth = 0.225 mm. These constraints 
are enforced only after the fourth layer, as the melt pool depth from the 
GAMMA simulation remains below 10% dilution due to the substrate’s 
boundary conditions during the first three layers. Additionally, the 
constraints are not considered near corners, i.e., 𝑑𝑥 ≤ 2mm∩𝑑𝑦 ≤ 2mm, 
due to the unavoidable heat accumulation. The trained TiDE model 
is embedded into the MPC as the prediction model providing �̂�𝑓 , and 
requires only one forward pass to generate the full prediction over the 
defined horizon.

5.2. Optimization setup

Several techniques have been implemented in this work to accel-
erate the solving process in real-time optimization. First, the gradient 
computation is handled using automatic differentiation through Py-
Torch’s autograd, enabling efficient calculation of first-order deriva-
tives without relying on numerical approximations [53]. For optimiza-
tion, we employed the l-bfgs algorithm [54], implemented in the
PyTorch-minimize package [55], which offers a balance between 
performance in large-scale optimization and computational efficiency, 
as it avoids the need for second-order derivative calculations (i.e.,
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Hessians). Further, we employed a warm-start strategy in each MPC 
step to accelerate the solving process, using the optimal solution from 
the previous step as the initial guess for the current one.

Next, the constrained optimization problem in the MPC is reformu-
lated as an unconstrained optimization problem using the augmented 
Lagrangian method, which transforms constraints into penalty [54]. 
This approach avoids the complexity of explicitly managing constraints 
(i.e., satisfying optimality conditions), and also enables the optimiza-
tion to proceed in a smooth, continuous space, enhancing the solver’s 
efficiency. Even so, implementing the augmented Lagrangian method 
will still increase the complexity of the objective function, and thus 
the optimizer might fail to terminate successfully. To maintain the 
feasibility of the MPC, when the solver terminates unsuccessfully, we 
resolve the problem using the default initial starting point instead of 
warm-start.

5.3. Execution of the MPC with GAMMA

Our pipeline for integrating the MPC with DED in GAMMA simula-
tion is shown in Fig.  8. Due to the requirement of past covariate and 
target for TiDE, we first simulate GAMMA in an open-loop manner, 
then let the MPC take over the rest of the process using closed-loop 
control as the required past targets are collected. The MPC updates 
the control action (the first element of the optimal control sequence 
𝐮∗) every five GAMMA simulation timestep (i.e., 0.0355 s/iter for the 
MPC and 0.0071 s/iter. for GAMMA). In other words, the GAMMA will 
simulate the fabrication using the same control input throughout five 
simulation steps.

Since the step size of the laser nozzle toolpath does not match the 
element size, the extracted melt pool temperature and depth exhibit 
significant fluctuations and need to be filtered. These fluctuations are 
primarily periodic, arising from the mismatch between element size and 
scanning rate. To address this, we average the melt pool temperature 
and depth extracted from the GAMMA simulation 𝐱𝐺𝐴𝑀𝑀𝐴 over the 
past 10 simulation steps as the measurement for the current MPC step 
𝐱𝑀𝑃𝐶 , i.e., 𝐱𝑀𝑃𝐶

𝑘 = (𝐱𝐺𝐴𝑀𝑀𝐴
𝑙 + 𝐱𝐺𝐴𝑀𝑀𝐴

𝑙−1 +⋯ + 𝐱𝐺𝐴𝑀𝑀𝐴
𝑙−9 )∕10, where 𝑘

denotes the MPC step and 𝑙 the GAMMA simulation step. This approach 
effectively reduces fluctuations in the extracted data from GAMMA.

Fig. 8. Code pipeline for the execution of the MPC in GAMMA simulation.
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5.4. Bench marking: PID controller

To evaluate the performance of the proposed MPC framework, we 
implemented a PID controller for melt pool temperature tracking as 
a benchmark, following [56]. Since the PID controller is primarily 
suited for single-input, single-output (SISO) systems and lacks intrinsic 
mechanisms to handle constraints explicitly, the comparison focuses 
solely on temperature reference tracking, with the melt pool depth 
constraint ignored for this benchmarking. The control input provided 
by the discrete-time PID controller can be obtained by: 

𝑢𝑘 = 𝑢𝑘−1 +𝐾𝑝𝑒𝑘 +𝐾𝑖𝑒0∶𝑘 +𝐾𝑑
𝑒𝑘 − 𝑒𝑘−1

𝛥𝑡
, (9)

where 𝑒𝑘 = 𝑟𝑘 − 𝑥temp,𝑘 is the error between the reference and the 
current melt pool temperature, 𝑒0∶𝑘 = 𝑒0∶𝑘−1 + 𝑒𝑘𝛥𝑡 is the discrete 
integral of error from 𝑘 = 0, and 𝛥𝑡 is the MPC time step. The PID 
gains are optimized using Bayesian optimization [57] to minimize the 
mean square error between the trajectory and the reference. The PID 
controller operates with the same time step as the MPC and employs 
the same data smoothing method for data extraction.

6. Results

6.1. Model evaluation

In this section, we evaluate the TiDE model using the GAMMA 
simulation results with unseen laser power inputs as the ground truth 
for future targets. A local comparison between the TiDE predictions and 
the test set is illustrated in Fig.  9. To emphasize the model performance, 
two challenging scenarios during a single printing process – layer 
transitions and turning at corners – are highlighted in Fig.  9(a)(b) 
and (c)(d), respectively, where the melt pool temperature and depth 
show significant rises and drops. In Fig.  9(a), both the uni-variate and 
multi-variate TiDE models successfully capture the changes in melt pool 
temperature after the laser is turned off and then reactivated while 
it starts printing a new layer. Similarly, Fig.  9(b) demonstrates that 
the TiDE model accurately tracks the dynamics of the melt pool depth 
during this transition phase.

Furthermore, Fig.  9(c)(d) highlights how the TiDE models capture 
the temperature and depth dynamics when the laser nozzle turns at 
a corner, where heat tends to accumulate due to the change of laser 
speed and direction. The discrepancy between the predicted and actual 
temperatures at the corner is within the range of 5 to 15 K, as shown 
in Fig.  9(c). Notably, the TiDE models provide smoother predictions for 
temperature and depth compared to the more fluctuating ground truth 
values.
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On a global scale, we assess the model’s accuracy using the test set. 
The mean absolute percentage error (MAPE) and relative root mean 
square error (RRMSE) for melt pool temperature prediction are 1.29% 
and 0.054, respectively, for the uni-variate TiDE model, and 1.24% and 
0.0515 for the multi-variate model. Additionally, for depth prediction, 
the multi-variate TiDE model achieves a MAPE of 4.25% and an RRMSE 
of 0.0441, indicating the high accuracy of the model.

Finally, we present the loss history for both uni-variate and multi-
variate TiDE models in Fig.  9(e)(f). The validation loss consistently 
converges without signs of overfitting, despite the large fluctuations 
in the training loss. These validations confirm that the TiDE model 
is accurate and reliable for use in model predictive control (MPC) 
applications.

6.2. Melt pool temperature control using the MPC

We first demonstrate the implementation of the proposed MPC 
for tracking an arbitrary melt pool temperature reference, comparing 
its performance against a PID controller as a benchmark. Fig.  10(a) 
illustrates the complete temperature trajectory over 10 printed layers, 
comparing PID and the MPC using uni-variate TiDE prediction during 
the MPC. Data from the layer transition phases, where the laser is 
turned off, has been removed for clarity. Although TiDE predicts the 
entire horizon at each iteration, we only display the state prediction 
at the first step to simplify visualization. The MPC clearly produces 
a smoother trajectory than the PID controller, with TiDE predictions 
closely following the MPC trajectory, demonstrating the accuracy of the 
model.

This advantage of the MPC is further reflected in the applied laser 
input shown in Fig.  10(b). While both the MPC and the PID controllers 
apply similar trends in laser power, the MPC results in smoother inputs, 
reducing fluctuations. Notably, the MPC prevents the peak laser power 
observed at the beginning of each layer in the PID controller, thanks to 
its ability to anticipate the rise in melt pool temperature.

Three key scenarios from the printing process are highlighted: The 
MPC’s takeover at the start (Fig.  10(c)), corner transitions on each layer 
(Fig.  10(d)), and the start of a new layer (Fig.  10(e)). In Fig.  10(c), 
the MPC demonstrates superior reference tracking compared to PID 
which exhibits more fluctuations. In Fig.  10(d), the MPC minimizes 
overshoot at corners, as it accounts for the learned dynamics, whereas 
PID produces larger tracking errors, resulting in greater overshoots. 
Similarly, Fig.  10(e) shows a more pronounced overshoot in the PID 
controller, while the MPC maintains a smoother trajectory, leveraging 
its predictive capabilities for better reference tracking.
Fig. 9. Evaluation of TiDE model and training loss: (a) and (c) show the melt pool temperature comparison between the GAMMA simulation result as the ground truth and the 
predictions of uni-variate and multi-variate TiDE model, and (b) and (d) shows the melt pool depth comparison between GAMMA simulation and multi-variate TiDE model. The 
TiDE prediction is made in one-shot throughout the horizon 𝑝 = 50. (e) and (f) are the loss for training uni-variate and multi-variate TiDE model.
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Fig. 10. Simulation result from GAMMA using the MPC and PID as controller. (a) Melt pool temperature reference, GAMMA simulation result using PID controller and the MPC, 
with the TiDE prediction used in the MPC. (b) Comparison of the controlled laser power using PID and the MPC, respectively. (c) Highlight of the beginning of the printing where 
the MPC starts activating. (d) Temperature trajectory at the corner. (e) Temperature trajectory at layer transition.
In all scenarios, TiDE model predictions closely align with the MPC 
trajectory, verifying accuracy. The 𝑅2 values for MPC and PID trajec-
tories, compared to the reference, are 0.9907 and 0.9827, respectively, 
indicating competitive performance. The developed MPC matches PID 
performance while significantly reducing overshoots and smoothing 
control inputs. However, the advantage of the MPC in DED extends 
beyond reference tracking to explicitly handle constraints in highly 
variable environments, as demonstrated in the next section.

6.3. Melt pool temperature control with melt pool depth as constraints

We further demonstrate the MPC’s constraint-handling capability to 
prevent defects by keeping the melt pool depth within the 10%–30% 
dilution range. Fig.  11(a)–(c) compares the melt pool temperature, 
depth, and laser power trajectories, respectively, for the constrained 
and unconstrained MPC. The gray dashed boxes are the region for 
closer examination, detailed in Fig.  11(d)–(e).

In Fig.  11(a), the temperature profiles are nearly identical when the 
constraints are relaxed, with minor differences caused by GPU com-
putation randomness. When constraints are enforced, the constrained 
MPC sacrifices certain performance of reference tracking to satisfy 
the constraints, leading to a significant deviation from the reference. 
Despite the fluctuations induced by constraint enforcement, the TiDE 
prediction accurately captures the system response. In Fig.  11(b), the 
constrained MPC effectively bounds the melt pool depth, with only 
minor violations occurring primarily at the start of a new layer, where 
some deviation is inevitable. In contrast, the unconstrained MPC main-
tains temperature tracking via the multi-variate TiDE model, but the 
melt pool depth exceeds 30% dilution after the fifth layer.

One consequence of constraint handling is the increased fluctuations 
in laser power, as shown in Fig.  11(c). Unlike the smooth trajectory of 
the unconstrained MPC, the constrained MPC continuously adjusts the 
laser power to balance constraint satisfaction and reference tracking. 
Additional fluctuations arise from occasional unsuccessful MPC solu-
tions, where the system either reuses the previous iteration’s solution 
or restarts with the default initial guess. This issue is exacerbated 
by the penalty method—if the MPC begins in an infeasible region, 
penalties can increase sharply, presenting a challenge in finding feasible 
solutions.
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We also select two segments of the trajectories for detailed ex-
aminations. The first region, shown in Fig.  11(d), demonstrates the 
trajectories in layer 5, where we can observe how the MPC leverages 
tracking performance and constraint satisfaction. This segment also 
includes two corners where both the melt pool temperature and depth 
change dramatically due to the change in laser speed and direction. 
When the laser nozzle is entering the corner, although the penalty is 
ignored locally, the MPC decreases the laser power to prevent violat-
ing depth constraints. As the MPC anticipates that the margin exists 
between the current melt pool depth and the constraint, the laser power 
increases so that the tracking error can be reduced. In Fig.  11(e), 
we show the segment at the transition between layers 6 and 7. For 
the unconstrained MPC, the controlled melt pool temperature closely 
follows the reference well, while the melt pool depth often exceeds the 
upper bound. In contrast, for the constrained MPC, the melt pool depth 
is well maintained within the feasible region with only a few violations. 
Note that the melt pool depth in our simulation will always start from 
negative values as a new layer starts, where it is natural that the melt 
pool depth will be below 10% dilution. As shown in Fig.  11(e), the melt 
pool temperature is more sensitive to changes in laser power compared 
to the depth, with temperature exhibiting more significant variations 
under different inputs. This highlights the importance of the MPC in 
this multi-output system, where the optimal control sequence must 
account for a longer horizon to balance control objectives, especially 
when the dynamics of multiple responses are different.

6.4. Computational time

The histogram of solving times for both constrained and the un-
constrained MPC, specifically during the solving process, is shown in 
Fig.  12, computed using an AMD Ryzen Threadripper PRO 3975WX 
32-Cores CPU. For the unconstrained MPC, the mean solving time is 
0.2575 s, with a maximum of 0.5437 s. In contrast, the solving time for 
the constrained MPC, i.e., the solving time using the warm start plus 
the backup initial guess if necessary, yields an average of 0.2775 s.

However, the distribution of the solving time has a long tail with 
0.3% of the data greater than one second, showing that the augmented 
Lagrangian approach might introduce instability when the initial guess 
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Fig. 11. Comparison between the enforcement of constraints on melt pool depth using GAMMA simulation. (a) Melt pool temperature comparison between the GAMMA result of 
unconstrained and the constrained MPC, with the TiDE prediction from the constrained MPC. (b) Melt pool depth comparison between the GAMMA result of the unconstrained 
and constrained MPC. (c) Applied laser power comparison for the constrained and unconstrained MPC. (d) Melt pool temperature and depth trajectory at the sixth layer. (e) Melt 
pool temperature and depth trajectory at the transition from the seventh to eighth layer.
is infeasible and the penalty increases drastically. This issue can be po-
tential solved by policy-based approaches such as explicit MPC [30,58] 
and ML-assisted MPC [59]. The former involves emulating the entire 
MPC-solving process using a policy learning model, and providing the 
optimal solution directly from the policy model, bypassing the solving 
process of MPC. The latter one focuses on improving the quality of 
warm start, rather than simply using the solution from the previous 
timestep. We observe the key issue that can fail the optimizer is 
when the reference trajectory changes significantly between consecu-
tive steps, making the previous solution a poor initial guess. To address 
this, we can leverage the policy model (or explicit MPC) to provide 
a better warm start, ensuring that the warm start is closer to the 
optimum. This approach, as demonstrated in [59], shows that ML-
assisted warm starts can significantly reduce the number of iterations 

Fig. 12. Histogram of solving time for the constrained and unconstrained MPC. The 
highlighted window shows the counts of instances with solving time greater than 1 s.
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required. Moreover, this method benefits from the initial guess from 
the policy model while still enforcing MPC constraints, ensuring safety 
guarantees.

6.5. Discussion

The verification using real-world experiments is planned in the 
long term, as it requires embedding the MPC controller with the 
existing machine, and building the interface connecting the sensors 
with the control units. Also, the implementation of a melt pool depth 
prediction module using online image processing will be required. In 
a well-controlled environment, we anticipate that the proposed MPC 
framework can perform as expected and will not be influenced by the 
environment noise for two reasons. First, because of the mismatch of 
laser scanning rate and element size, the uneven heat treatment time 
on each element induces severe fluctuations. Compared to the sensor 
data, the fluctuation that exists in the post-processed simulation data 
still exhibits greater variation than the noisy sensor data. Second, since 
TiDE uses the dense encoder to extract important features from the 
input data, it also serves as a noise filter to handle the noisy and 
corrupted data and exhibit noise-agnostic performance on prediction. 
Therefore, we believe that static environmental noise will not signif-
icantly affect the performance of the proposed MPC. However, the 
challenge of implementing the MPC lies in the mismatch between the 
model and the unknown while varying environmental conditions and 
material properties. Even though TiDE can be calibrated offline, an 
effective, data-efficient approach for model adaptation is required to 
address the unknown variability during the manufacturing process. As 
TiDE is a neural network (NN)-based model, it behaves similarly to 
other NNs and supports fine-tuning through approaches like few-shot 
learning [60,61].

We also expect that this approach is generalizable to other manufac-
turing systems. Since the simultaneous multi-step MPC is a variant of 
discrete-time MPC using a multi-step ahead predictor to replace recur-
sive rollouts with the single-step ahead predictor, its formulation can 
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be generalized to any type of dynamical system formulated in discrete 
state space systems. The examples in [33] show that a similar formu-
lation can be applied to chemical engineering problems. We also use 
a discrete state space model as an illustration in our latest work [62]. 
For manufacturing systems, we expect that the proposed MPC can be 
applied to similar processes such as welding, as it also involves complex 
dynamics with temporal dependence on history and with a similar 
nature of metal deposition, liquidization, and solidification. Moreover, 
one special feature of our method compared to the existing multi-
step MPC is that the TiDE model is capable of accommodating the 
pre-defined parameters, e.g. geometrical information and processing 
condition (material) as the model input using the covariates, making 
it suitable for manufacturing systems where the geometry and the path 
can be pre-determined, increasing the predictive accuracy of TiDE. The 
necessary steps for adapting the proposed framework to other systems 
will be identifying important features of the geometry, such as feature 
engineering, to represent the local geometry using the covariates. Also, 
we suggest that the fine-tuning of the hyperparameters (𝑤, 𝑝, 𝑄, 𝑅) may 
be important to balance between proactive and conservative control 
strategies. In the broad application, we also expect that the proposed 
multi-step MPC approach can be used in scheduling problems where 
the MPC can be integrated with more existing time-series applications 
to perform a broad Digital Twin application in decision-making.

While this work presents a promising approach, several assumptions 
were made that may limit its general applicability. First, we assume 
that the computational time for solving the MPC and TiDE evaluations 
can be neglected, thus potential delays were not considered. In reality, 
the solving time of the MPC is not always bounded, making it difficult 
to determine a consistent control frequency. This issue may be solved 
by using neural network-based optimization (NNBO) methods [28] or 
explicit MPC [58] to emulate the MPC-solving process, allowing a single 
neural network to provide control policies in a single forward pass. 
Additionally, in our framework, we fixed the scanning rate to simplify 
the processes of making the prediction and solving MPC. However, 
introducing the scanning rate as a dynamic control variable could 
potentially enhance the flexibility of the process control. Moreover, the 
TiDE model we developed is tailored to our specific target geometry, 
limiting its applicability to other geometries. Lastly, this work serves 
as a proof of concept using simulation data and has yet to be validated 
through experimental data, which could provide further insights into 
its practical effectiveness.

7. Closure

In this work, we introduce a simultaneous multi-step MPC frame-
work using time-series DNN as an embodiment of real-time decision-
making for Digital Twins in autonomous manufacturing. This frame-
work utilizes a data-driven time-series model, TiDE, to predict future 
states required for the MPC in one shot, then implements gradient-
based optimization for solving the MPC. Although we focus on DED as 
an example in this work, the demonstrated nonlinear system identifi-
cation with TiDE and the multi-step MPC framework can be seamlessly 
generalized for other manufacturing systems. While using DED as the 
case study, our method leverages the strengths of TiDE, such as its 
ability to handle both past and future covariates and fast prediction, 
making it well-suited for the dynamic nature of DED and the MPC 
controllers, respectively. Through rigorous validation using a single-
track multi-layer square, we demonstrate the accuracy and reliability of 
the TiDE model in predicting melt pool features. The results show that 
the proposed MPC effectively handles melt pool depth constraint, which 
is a challenging task for the PID controller, while yielding competitive 
performance as the PID controllers in tracking melt pool temperature. 
This work not only highlights the need for MPC to improve the qual-
ity of manufacturing processes but also opens new applications for 
integrating ML with MPC.
423
In the future, we will leverage the learned quantile [62] for un-
certainty quantification to develop a robust MPC framework to im-
prove guarantee constraint satisfaction. We will also explore geometric-
agnostic model representations, such as the Koopman operator [31] 
or neural operators [63], alongside compatible MPC frameworks to 
enhance generality and knowledge transfer. Last but not least, efficient 
model updating techniques will be developed and integrated with our 
data-driven models, enabling real-time updates and decision-making to 
fulfill the full potential of a Digital Twin system.
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