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Digital twins, virtual replicas of physical systems that enable real-time monitoring, model
updates, predictions, and decision-making, present novel avenues for proactive control
strategies for autonomous systems. However, achieving real-time decision-making in
digital twins considering uncertainty necessitates an efficient uncertainty quantification
(UQ) approach and optimization driven by accurate predictions of system behaviors,
which remains a challenge for learning-based methods. This article presents a simultaneous
multistep robust model predictive control (MPC) framework that incorporates real-time
decision-making with uncertainty awareness for digital twin systems. Leveraging a multi-
step-ahead predictor named time-series dense encoder (TiDE) as the surrogate model,
this framework differs from conventional MPC models that provide only one-step-ahead
predictions. In contrast, TiDE can predict future states within the prediction horizon in
one shot, significantly accelerating MPC. Furthermore, quantile regression is employed
with the training of TiDE to perform flexible and computationally efficient UQ on data
uncertainty. Consequently, with the deep learning quantiles, the robust MPC problem is for-
mulated into a deterministic optimization problem and provides a safety buffer that accom-
modates disturbances to enhance the constraint satisfaction rate. As a result, the proposed
method outperforms existing robust MPC methods by providing less conservative UQ and
has demonstrated efficacy in an engineering case study involving directed energy deposition
(DED) additive manufacturing. This proactive, uncertainty-aware control capability posi-
tions the proposed method as a potent tool for future digital twin applications and real-time
process control in engineering systems. [DOI: 10.1115/1.4069104]

Keywords: digital twin, robust model predictive control, real-time decision-making, time-
series, deep neural network, quantile learning

1 Introduction
1.1 Problem Definition. The concept of digital twins [1,2] has

shown promising revolutions in autonomous industries such as
manufacturing [3–5] and predictive maintenance [6]. It brings the
idea of building bidirectional interactions between the physical
system and its virtual counterpart. This enables online decision-
making processes to be conducted automatically utilizing the state
prediction provided by the virtual systems, and reacts proactively
in response to the feedback from the physical systems [7]. One
embodiment of online decision-making for digital twins is via
model predictive control (MPC) [8], which optimizes system per-
formance by predicting future behavior and adjusting control
inputs in real-time based on the model prediction. To account for
disturbances in MPC, a family of uncertainty-aware MPC

approaches has been proposed to enhance constraint satisfaction
rates in the presence of anticipated uncertainty. Methods such as
stochastic MPC [9] and robust MPC [10] aim to approximate uncer-
tainty propagation through the known system dynamics, quantify
the distribution of predicted states, and solve the MPC problem
by explicitly incorporating uncertainty bounds with the constraints.
As the accurate description of the system dynamics may be unavail-
able a priori, with the recent advancements in machine learning and
neural networks (NNs) [4], learning-based or data-driven predictive
controllers [11,12] have gained significant attention. However,
although NNs can emulate the system dynamics accurately, apply-
ing NNs in uncertainty-aware MPC presents significant challenges,
as quantifying and estimating uncertainty distributions can be both
complex and computationally expensive. Consequently, integrating
NN-based models with efficient uncertainty quantification (UQ)
methods for decision-making remains an open research question
critical to the advancement of digital twin technologies.

1.2 Uncertainty-Aware Model Predictive Control.Uncer-
tainty-aware MPC methods can be broadly categorized into
robust and stochastic approaches [8]. Robust MPC focuses on
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optimizing control inputs to perform effectively under worst-case
scenarios, ensuring system stability and constraint satisfaction
even under bounded uncertainties [10]. Stochastic MPC leverages
probabilistic models to incorporate uncertainties into the optimiza-
tion process and formulate probabilistic (or chance) constraints in
an optimal control problem [9], aiming to achieve a balance
between performance and reliability. Techniques like min–max
MPC formulate the cost function as the maximum of cost values
with the samples generated based on disturbance models [13].
However, min–max MPC often comes with significant computa-
tional overhead, posing challenges for real-time implementation
[14–16]. To make these optimal control problems more computa-
tionally tractable, tube-based techniques have been explored to
solve the robust and stochastic MPC problems by explicitly identi-
fying the uncertainty regions in state and control action spaces
[16–19]. However, many of these approaches still assume prior
knowledge of system dynamics or disturbance characteristics, lim-
iting their applicability in real-world scenarios with incomplete or
evolving information. In recent years, data-driven modeling,
which can capture complex temporal dependencies and nonstation-
ary dynamics, has gained attention for MPC frameworks. By
leveraging these advances, the integration of data-driven methods
into MPC frameworks offers new opportunities to improve both
performance and adaptability under uncertain conditions.

1.3 Data-Driven Model Predictive Control. Data-driven
models are essential for surrogating physics in a digital twin and
MPC, particularly in two key scenarios: when the system’s under-
lying physics is overly complex or not fully understood, and
when simulations are prohibitively computationally expensive or
time-consuming [20]. Under these circumstances, data-driven/
learning-based methods can identify the system directly using
observational data. For example, neural state space models [21]
can replace the system and input matrices in a state space formula-
tion. Recursive neural network and long short-term memory
(LSTM) are also popular options since their structures resemble
the propagation of the dynamics of the systems [22–24].
However, enabling learning-based methods with uncertainty aware-
ness for real-time applications is still challenging, primarily due to
the computational complexity of performing UQ. Popular UQ tech-
niques for NNs, such as ensemble methods, Bayesian NNs, Monte
Carlo (MC) dropout, and bootstrapping, fall under the category of
sampling-based methods [25]. While these methods can numeri-
cally approximate the distribution of NN outputs [26], their reliance
on Monte Carlo sampling and multiple forward passes of NNs
suffers from significant computational time, rendering them imprac-
tical for many engineering applications involving MPC.
In contrast, parametric methods, which estimate the parameters of

the uncertainty distribution directly, provide a computationally effi-
cient alternative and are widely applied in learning-based MPC.
For instance, Kinky inference has been employed to learn parameters
representing the bounds of system states [11]. Similarly, in Ref. [27],
a Gaussian process (GP) is utilized as a discrepancy model to capture
unknown system dynamics, with its predictive uncertainty serving as
a probabilistic bound for nominal predictions. One noteworthy
approach is quantile regression, which directly learns user-defined
quantiles of the data. Unlike methods that require assumptions
about the data distribution, quantile regression offers greater flexibil-
ity, making it particularly appealing for MPC application [28].
Another challenge in data-driven MPC lies in the significant

computational cost of solving optimization problems online.
Unlike linear MPC, which benefits from efficient closed-form or
quadratic programming-based solutions via linear quadratic regula-
tion (LQR) [8], data-driven MPC relies on surrogate models, e.g.,
black-box functions such as neural networks, which require itera-
tive numerical solvers and multiple forward evaluations. This
becomes particularly burdensome when using one-step-ahead pre-
dictors, which must be rolled out recursively to generate the full tra-
jectory prediction.

1.4 Model Predictive Control With Multistep-Ahead
Predictors. To alleviate the computational burden, a growing
body of research has turned toward multistep-ahead predictors,
taking advantage of the recent advances in machine learning.
These models generate the entire future trajectory in a single
forward pass, reducing the number of function evaluations during
optimization and thus significantly lowering computational cost.
For example, Park et al. [29] demonstrated that using multistep pre-
dictors based on transformer architectures yielded substantial
improvements in runtime and prediction accuracy, especially for
longer horizons. This benefit is particularly attractive in real-time
MPC settings, where computational efficiency is critical.
Moreover, multistep predictors provide structural advantages for

UQ [30,31]. Traditional robust MPC approaches, such as tube-
based methods, typically require recursive uncertainty propagation,
which can lead to overly conservative UQ. Recent work, such as
Ref. [30], highlights that multistep predictors allow uncertainty to
be learned directly from data at the trajectory level, bypassing the
need for recursive propagation and enabling simpler, more intuitive
bounds. This is especially valuable in data-driven contexts, where
the model structure may not be fully known, and where robust
decision-making must account for uncertainty without sacrificing
computational tractability. Uncertainty estimation in existing
methods for robust MPC with multistep-ahead predictors [30,32]
focuses on deriving the worst-case using linear models with set
membership identification. Although they provide interpretability
and theoretical rigor in estimating error bounds, these approaches
are limited in linear models and can hardly be generalized to
NN-based applications.
In parallel, advances in time-series forecasting have demon-

strated the effectiveness of quantile regression integrated with
sequence-to-sequence deep learning models for multistep uncer-
tainty estimation [33,34]. These models can capture complex
temporal patterns and provide prediction intervals across time,
offering a natural fit for robust decision-making that requires
trajectory-wise uncertainty estimates. Taken together, these trends
point to multistep-ahead prediction and direct UQ learning, such
as quantile regression, as promising directions for improving both
efficiency and robustness in data-driven MPC, particularly under
real-time and uncertain environments in digital twin applications.

1.5 Research Objective. This work introduces a simultaneous
multistep robust MPC framework that leverages time-series deep
neural networks and deep quantile learning to enable fast,
uncertainty-aware decision-making in digital twins of complex
engineering systems. While previous works have explored multi-
step predictions to accelerate MPC [29] and employed quantile
regression to quantify uncertainty in single-step MPC [28], this
work is, to the best of our knowledge, the first to unify these two
paradigms, enabling deep learning quantiles to be explicitly used
as predicted bounds in a multistep robust MPC setting. By combin-
ing the computational efficiency of multistep-ahead predictors with
the flexibility and accuracy of trajectory-level uncertainty quantifi-
cation, our framework opens a new direction for robust MPC that is
both data-driven and scalable. As MPC is considered a popular
model-based decision-making approach that can be built on existing
digital twin frameworks, such as Refs. [1,3,4,35], this proposed
method pushes the limit of current MPC, providing a new option
for decision-making under uncertainty in digital twin applications.
The proposed framework, depicted in Fig. 1, comprises two

stages. In stage 1, noisy system data are gathered as the training
data. A time-series deep neural network, named time-series dense
encoder (TiDE), is employed to perform nonlinear system identifi-
cation, capturing both the nominal system dynamics and the quan-
tiles of the data uncertainty, encompassing the uncertainty of the
nominal prediction. Subsequently, in stage 2, TiDE serves as the
predictive model (virtual system) operating with the proposed mul-
tistep robust MPC as the virtual-to-physical integration. The
nominal prediction (median) is utilized to assess the reference
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tracking performance, while the predictive quantiles are employed
to guarantee constraint satisfaction. This proposed method is vali-
dated using an illustrative example and an engineering case study
in additive manufacturing (AM). The contributions of this work
include:

• We propose a robust MPC framework for multistep-ahead pre-
diction models as an embodiment of uncertainty-aware real-
time decision-making for digital twins.

• We demonstrate the effectiveness of deep learning quantiles in
quantifying data uncertainty.

• We validate the proposed methods using several case studies,
showing the generality of this method in the digital twin
paradigm.

The rest of the article is structured as follows: In Sec. 2, the
technical background of MPC, TiDE, and quantile regression will
be introduced. Section 3 details the proposed robust MPC frame-
work, including problem formulation, model preparation, and
optimization techniques. In Sec. 4, a numerical model is used as a
demonstration to walk through the implementation details, and
the result in an engineering case study on AM is revealed in Sec.
5. Lastly, we will conclude this work in Sec. 6.

2 Technical Background
Notation: The sets of real numbers and non-negative integers are

denoted by R and N≥0, respectively. Given a, b ∈ N≥0 such that
a < b, we denote N[a,b] : = {a, a + 1, . . . , b}. [A]i and [a]i denote
the ith row and element of the matrix A and vector a, respectively.
x̂k+i denotes the i-step-ahead predicted value of x at time k. The
notation Ia×a denotes an a-by-a identity matrix, Q ≻ 0 indicates a
positive definite matrix, and ‖x‖2Q = x⊤Qx refers to a quadratically
weighted norm. Given a random variable X, E[X] denotes its
expected value. A Gaussian distribution with mean vector μ and
covariance matrix Σ is represented as N (μ, Σ). Given two sets
A and B, then A⊕ B : = {a + b|a ∈ A, b ∈ B} (Minkowski
sum) and A⊖ B : = {a ∈ A|a + b ∈ A, ∀b ∈ B} (Pontryagin
difference).

2.1 Model Predictive Control and Robust Model Predictive
Control. MPC), also known as receding horizon optimal control, is
an advanced control method that employs an explicit dynamic
model of the system to predict and optimize future control actions
within a finite horizon [8]. This ensures that constraints on inputs
and outputs are met while minimizing a specified cost function.
MPC iteratively solves an optimization problem at each time-step,
applies the resulting control action, and repeats the process as the
time horizon advances, as depicted in Figs. 2(a) and 2(b).

Assume that a general nonlinear system can be represented as

xk+1 = F(xk , uk) ∀ k ∈ N (1)

Fig. 1 The proposed multi-step robust MPC framework

Fig. 2 Illustration of MPC and robust MPC. (a) Illustration of
MPC at time=k. (b) Illustration of MPC at time k + 1. (c) Illustra-
tion of robust MPC. The green lines/stairs at the bottom is the
optimal control input sequence, and the blue dashed lines are
the state predictions from the model given the optimal control
inputs. The gray tube in (c) surrounding the dashed lines repre-
sents the quantified uncertainty.
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where F denotes the dynamic function that maps from the current
state and control action to the state at the next step. With the predic-
tion horizon length noted as N and the specified reference
r = [rk+1, . . . , rk+N], the MPC can be formulated as an optimization
problem for the future control inputs u = [uk, . . . , uk+N−1]:

min
u

J(u, x̂, r) =
∑N−1
i=0

‖x̂k+i+1 − rk+i+1‖2Q + ‖uk+i‖2R
[ ]

(2a)

s.t. x̂k+1 = F̂(xk , uk) (2b)

x̂k+i+1 = F̂(x̂k+i, uk+i) ∀ i ∈ N[1,N−1] (2c)

x̂k+i ∈ X ∀ i ∈ N[1,N] (2d)

uk+i ∈ U ∀ i ∈ N[0,N−1] (2e)

g(x̂k+i+1, uk+i) ≤ 0 ∀ i ∈ N[0,N−1] (2f )

h(x̂k+i+1, uk+i) = 0 ∀ i ∈ N[0,N−1] (2g)

where ‖x‖2Q = x⊤Qx represents the quadratic operation on the state
vector x, and the weighting matrices Q ≻ 0 and R ≻ 0 are sym-
metric. The MPC objective function J in Eq. (2a) consists of two
types of loss: ‖x̂k+i+1 − rk+i+1‖2Q refers to the reference tracking
error throughout the horizon using the predicted states and
‖uk+i‖2R penalizes the control efforts. The two loss terms can be
balanced by user-selectedQ andR. Equation (2c) is the general rep-
resentation of the dynamic equation, where F̂ denotes the predictive
model. Equations (2d) and (2e) are the constraints on states and
control actions, respectively, while Eqs. (2f) and (2g) explicitly
denote all the inequality and equality constraints if any apply.
While traditional MPC effectively optimizes control actions

within a finite horizon based on a deterministic system model
[36], it does not inherently account for uncertainties or disturbances
that can impact the system dynamics, states, or constraints. The
general nonlinear system with uncertainties can be represented as

xk+1 = Fw(xk , uk , wk) (3)

where wk represents the disturbance vector, often assumed to lie
within a known set W or be independent and identically normally
distributed with zero means and a diagonal covariance matrix Σ:

wk ∈ W or wk ∼ N (0, Σw) (4)

where Σw = diag σ2w(1) , . . . , σ2w(n)

( )
.

To address this limitation, robust MPC extends the traditional
MPC framework by explicitly incorporating uncertainties into the
optimization problem, ensuring constraint satisfaction under the
effect of uncertainties. The robust MPC optimization problem can
be formulated by

min
u

J(u, x̂, r) =
∑N−1
i=0

‖x̂k+i+1 − rk+i‖2Q + ‖uk+i‖2R
[ ]

(5a)

s.t. x̂k+1 = F̂w(xk, uk) (5b)

x̂k+i+1 = F̂w(xk+i, uk+i) ∀ i ∈ N[0,N−1] (5c)

x̂k+i ∈ X ∀ i ∈ N[0,N−1] (5d)

uk+i ∈ U ∀i ∈ N[0,N−1] (5e)

g(x̂k+i+1, uk+i) ≤ 0 ∀ i ∈ N[0,N−1] (5f )

h(x̂k+i+1, uk+i) = 0 ∀ i ∈ N[0,N−1] (5g)

Here, F̂w is a surrogate model trained using noisy data. x̂k is a
general representation of state prediction that can either be determi-
nistic or stochastic. Note that since the disturbance is unknown to
F̂w when making state prediction, in contrast to Eq. (3), wk is not
explicitly treated as the input of F̂w.
Among all robust MPC techniques, min–max MPC is easy to

implement because the solving procedure does not differ from con-
ventional MPC. The major difference is that min–max MPC
handles uncertainties by defining the cost function as the
maximum of cost values over all realizations of disturbance
sequences by multiple evaluations [13]. It is straightforward but
inefficient because simulating all possible disturbances requires
considerable cost and computational effort. Another drawback of
min–max formulations is that the method results in too conservative
solutions that restrict the operation and performance of the system
[15,37,38]. Although generating more samples to simulate distur-
bances can prevent such solutions, the online MPC computation
becomes more time-consuming, leading to delayed system
actuation.
Tube-based MPC can be used to solve robust MPC problems by

explicitly identifying the actual state region surrounding the
nominal trajectory (called tube), illustrated in Fig. 2(c). A tube
accounts for deviations caused by uncertainties and can be included
in the robust MPC formulation to satisfy the constraints for all real-
izations of disturbances [8,10]. However, tube-based MPC
approaches typically rely on the assumptions of model representa-
tions (e.g., linear dynamic model [16–19] or nonlinear model
with Lipschitz functions [39]) and disturbance types. Due to these
assumptions, implementing tube-based MPC approaches to
complex dynamic models presents a significant challenge.

2.2 Time-Series Deep Neural Network. There are two main
considerations when selecting a suitable time-series deep neural
network (DNN) for MPC: (1) The inference speed should be fast
as the solving process of MPC requires several function/model
evaluations and (2) the structure of the DNN should accommodate
the general format of dynamical systems as denoted in Eq. (1). In
this work, we select TiDE [40], illustrated in Fig. 3, as the DNN
for surrogating dynamical systems due to its forward speed,
model accuracy, and the compatibility of its input structure.
TiDE’s architecture, with parallelized dense layers and residual
connections, ensures both computational efficiency and stable train-
ing for dynamic system modeling.
TiDE, designed with a residual network (ResNet) architecture for

time-series data, leverages residual connections to enable effective
gradient flow during backpropagation, preventing vanishing gradi-
ents and capturing long-term dependencies. Its reliance on dense
layers allows it to process all time-steps in parallel, making its
forward pass faster than popular sequence-to-sequence models
like transformers and LSTM. Unlike LSTMs, which process
sequences one step at a time recursively, TiDE operates on the
entire input sequence as a batch, fully utilizing modern hardware
like GPUs. While transformers also parallelize, their self-attention
introduces quadratic time complexity with respect to the sequence
length, whereas TiDE’s complexity grows linearly due to simple
matrix multiplications. This linear complexity makes TiDE particu-
larly suitable for real-time applications where low-latency predic-
tions are critical. This efficiency allows TiDE to deliver faster
inference while maintaining robust performance for time-series
tasks.
The embedding capability of TiDE, realized by the dense encod-

ers and decoders, improves predictions by transforming raw inputs
into dense, low-dimensional representations that capture meaning-
ful patterns and relationships. This reduces data dimensionality,
encodes complex interactions, and enhances the model’s ability to
generalize across unseen examples. This dimensionally reduced
embedding also plays the role of a noise filter by only identifying
and embedding the most important features in its latent space. By
effectively compressing input information, the embeddings help
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mitigate the risk of overfitting, especially in high-dimensional data-
sets. For time-series data, embeddings efficiently represent temporal
attributes or categorical features, enabling TiDE to extract richer
patterns and improve prediction accuracy.
Different from conventional sequence-to-sequence prediction

models, TiDE supports the usage of covariates and targets as the
model input, as illustrated in Fig. 4, making it suitable for surrogat-
ing dynamical systems. The target variable is the primary variable
of interest in a time-series forecasting model. It represents the
value that is aimed to be predicted or forecasted, such as the
future states of the system. The covariates are additional variables
that provide supplementary information and can aid in predicting
the target variable. They can be further categorized as past covari-
ates and future covariates. These variables are often external or sup-
plementary and are not part of the target series but are related to it.

This structured separation of covariates and targets allows TiDE to
capture both short-term dynamics and long-term dependencies
more effectively. As shown in Fig. 4, TiDE takes past target (e.g.,
past states xk−w+1 : k as an autoregressive system), past covariates
(e.g., past input uk−w : k−1 and other past input conditions dk−w : k−1
if required), and future covariates (e.g., future input uk : k+N−1 and
other future input conditions dk : k+N−1) as model input to predict
the future target xk+1 : k+N (future states). In particular, we denote
d as the predefined system variable (e.g., the geometry information
of a given part in additive manufacturing) and u as the future control
input to be optimized in MPC (e.g., the laser power). Therefore,
TiDE can be formulated as

x̂k+1 : k+N = TiDE(xk−w+1 : k , dk−w : k−1, uk−w : k−1,

dk : k+N−1, uk : k+N−1|ϕ)
(6)

where ϕ is the trainable NN parameters of TiDE.
As a result, the separation of targets and covariates allows TiDE

to resemble the nature of dynamical systems in a multistep-ahead
setting. In contrast, some forecasting models, such as transformers
[29] and N-BEATS [41], predict future targets solely based on the
past target, but do not consider covariates explicitly. This design
choice makes TiDE more versatile for applications where external
influences, such as control inputs or environmental conditions, sig-
nificantly affect system behavior.

2.3 Quantile Regression. Quantile regression (or quantile
loss) [28,42,43] is a versatile statistical technique used to estimate
the conditional quantiles of a response variable, such as the
median or other given percentiles, based on a set of predictor vari-
ables. Unlike ordinary least-squares regression, which focuses on
modeling the mean of the response variable, quantile regression
captures a broader picture by modeling the entire conditional distri-
bution. Specifically, quantile regression is effective in quantifying
aleatoric uncertainty, which arises from inherent variability in the
data. One key advantage of quantile regression is its robustness to
outliers, as it is less sensitive to extreme values compared to
methods such as mean square error loss. This makes it particularly
useful for datasets with skewed or irregular distributions. Moreover,
quantile regression does not require prior assumptions about the dis-
tribution of the data, enabling it to handle heteroscedastic uncer-
tainty situations where the variability of the response changes
across levels of the predictors. This flexibility allows the model to
adapt to complex, real-world datasets where such variability is
common.
The standard loss function for implementing quantile regression

in supervised learning is defined as

Lq,j(yt , ŷt) =
q · (yt − ŷt) if yt ≥ ŷt
(1 − q) · (ŷt − yt) if yt < ŷt

{
(7)

where the objective is to minimize the errors of a given quantile
level q (e.g., 0.5 for median) for response j. yt and ŷt are the
ground truth value and the predicted value of the target at time t,
respectively.
To justify the need for quantile regression, we perform a bench-

mark testing against popular UQ methods, including GP, MC
dropout, ensemble methods, and deep evidential regression [44].
Here, a one-dimensional benchmark problem from Ref. [44] is
modified by injecting non-Gaussian noise:

y = x3 +Wexp (8)

whereWexp ∼ Exp(15) − 15 follows a zero mean exponential distri-
bution with rate λ = 15. The reason for not assuming a normal dis-
tribution for the injected noise is that, even if the environmental
disturbance is normally distributed, its propagation through a non-
linear system does not guarantee a normally distributed state. There-
fore, when applying deep learning quantiles to nonlinear systems,
assuming the state distribution is normal may not be the mostFig. 4 Data structure of the input and output of TiDE

Fig. 3 Network structure of TiDE, modified from Ref. [40]
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appropriate. Aside from GP, all the NNs in each method have two
hidden layers with size= 64 and use ReLU() as the activation func-
tion, following the setting in Ref. [44], while the output layer may
be different, depending on each case. For training the model, 1334
training samples are generated within the range of
[− 5, − 4] ∪ [− 1, 4], and all the NN models are trained with
Adam for 500 epochs a with learning rate of 0.1. To evaluate the
methods, a test set of size 1000 is generated using x ∈ [− 7, 7]
and realized using Eq. (8). Quantitative indices, including residual
mean square error (RMSE), R2, and coverage rate (number of test
samples that fall within probabilistic bounds/total number of test

samples), are provided. Since the input range of the training and
test sets is different, we not only evaluate the efficacy of learning
noise distribution but also test the generalizability for extrapolation
and interpolation at the sparse data region.
As can be seen from the results in Table 1, because GP, MC

dropout, ensemble method, and evidential regression all assume
the uncertainty distribution to be normal, only quantile regression
can effectively capture the skewed distribution, while others
failed to provide accurate uncertainty bounds. In fact, since GP,
MC dropout, and ensemble method are quantifying epistemic
(model) uncertainty and are predicting confidence intervals (CIs)

Table 1 Benchmarking of UQ methods

Method Gaussian process Monte Carlo dropout Ensemble method

UQ type Epistemic (CI) Epistemic (CI) Epistemic (CI)

Visualized bounds [ ± 1σ, ± 2σ, ± 3σ] [ ± 1σ, ± 2σ, ± 3σ] [ ± 1σ, ± 2σ, ± 3σ]

Coverage rate for
each bound

[10.2%, 18.2%, 29.1%] [10%, 20.8%, 36.4%] [11.1%, 23.3%, 36.3%]

RMSE/R2 113.1452/0.2429 56.2704/0.8127 53.9461/0.8279

Others Assume the noise is homeostatic Dropout rate = 0.2;
MC sample= 1 × 105

Number of NNs: 10

Method Evidential regression Quantile regression

UQ type Epistemic+ aleatoric (PI) Aleatoric (PI)

Visualized bounds [ ± 1σ, ± 2σ, ± 3σ] q = [(0.25, 0.75), (0.05, 0.95), (0.001, 0.999)]

Coverage rate for
each bound

[40.2%, 68.4%, 85.8%] [32.7%, 59.5%, 73.2%]

RMSE/R2 73.7554/0.6783 53.8638/0.8218
Others λ = 1 × 10−4 Each quantile is predicted by an individual NN

Note: The lower figure for each method highlights the region within the pink dashed box.
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rather than predictive intervals (PIs), it is reasonable that these
methods failed to capture the aleatoric (data) uncertainty, which is
more critical in our application. Evidential regression, by learning
the uncertainty of the estimated standard deviation, is capable of
learning both epistemic and aleatoric uncertainty. However, simi-
larly, it suffers from assuming the distribution to be normal and pro-
vides obvious over-conservative CIs. In contrast, by using quantile
regression, it can flexibly learn the median response and bounds
effectively regardless of the uncertainty distribution. The prediction
accuracy of quantile regression also outperforms other methods.
These results support the need for quantile regression as a com-

putationally efficient, flexible, and accurate UQ method for applica-
tions in robust MPC for nonlinear systems.

2.4 Implementation of Quantile Regression on TiDE. The
quantile loss for time-series data is an extension of the standard
quantile loss. For time-series data with N steps ahead to be pre-
dicted, the total quantile loss is often calculated as the sum over
all time-steps and quantile levels:

LQ =
1

N · l
∑l

j=1

∑N
t=1

Lq,j(yt , ŷt) (9)

where l is the level of the assigned quantiles.
Implementing quantile loss in TiDE involves increasing the

output dimensions to accommodate state predictions for multiple
quantile levels. For a prediction setup with batch size B, horizon
length N, number of responses D, and l quantile levels for each
response, the output tensor from TiDE will have dimensions
[B, N, D, l]. This expanded output structure facilitates the direct
estimation of uncertainty bounds by providing multiple quantile
estimates for each prediction. This design allows TiDE to predict
the entire output tensor, including all quantile values for each
response, in a single forward pass. The TiDE prediction model
with the quantile output can be represented by

x̂k+1 : k+N = [�̂xk+1 : k+N , ˜̂xk+1 : k+N , x̂k+1 : k+N ]
T

= TiDE(xk−w+1 : k , dk−w : k−1, uk−w : k−1,

dk : k+N−1, uk : k+N−1|ϕ)
(10)

In this context, �̂xk : k+N−1, ˜̂xk : k+N−1, and x̂k : k+N−1 represent the
upper quantile, median, and lower quantile of the predicted
states, respectively. To simplify the notation, we utilize superscripts
p, f , and p : f to denote the past, the future, and the past and future
covariates/targets, respectively, at time k. The equation of the TiDE
model becomes

[�̂x
f
k+1, ˜̂x

f
k+1, x̂

f
k+1]

T = TiDE(xpk , u
p
k , u

f
k , d

p
k , d

f
k|ϕ) (11)

By employing this one-shot approach, TiDE substantially
reduces computation time through efficient parallelization.

3 Simultaneous Multistep Robust Model
Predictive Control for Digital Twin
The purpose of this work is to integrate the simultaneous

multistep-ahead predictive quantile with MPC, demonstrating a
learning-based robust MPC that performs decision-making under
uncertainty for digital twins. In this section, we first describe the
development of the virtual system via TiDE. Then, we focus on
the robust MPC formulation incorporating multistep quantile pre-
diction and introduce the optimization tools that can benefit real-
time solving. A complete walk through of the process will be
detailed in Sec. 4.

3.1 Building the Virtual System Via TiDE: Data Generation
and Model Training. TiDE serves not only to learn the dynamics
of the physical system but also to capture the distribution of system

behaviors under the influence of uncertainty. To achieve this, the
training data collected from the physical system must accurately
represent its behavior under operational disturbances. This
ensures that the model can generalize effectively and provide reli-
able predictions across a range of operating conditions.
In many existing learning-based robust MPC approaches (when

the system model is unknown), the disturbances affecting the
system dynamics are assumed to be known beforehand, and training
data are typically generated through virtual experiments under pre-
defined disturbance conditions. However, in practical engineering
scenarios where the distribution of uncertainties is unknown, the
collected data inherently include noise and can be directly utilized
as training data for TiDE, enabling it to adapt to real-world condi-
tions. This data-driven approach allows TiDE to model both the
nominal system behavior and the variability introduced by stochas-
tic disturbances.
At the model training stage, TiDE directly learns the user-

assigned quantile levels from the noisy training data. In this
setting, there is no assumption made regarding the boundedness
of the response under uncertainty. Consequently, even trained
under noisy data, TiDE can provide smooth predictions for the
quantile levels and the median, efficiently quantifying the data (ale-
atoric) uncertainties. This allows the model to balance prediction
accuracy with uncertainty estimation, making it suitable for
robust decision-making in dynamic systems. This is because the
crucial features are extracted and mapped into the dense encoder,
which also serves as a noise filter to eliminate the impact of noise
and disturbances while preserving the important information.
When training the TiDE model using PyTorch, we use the
Adam optimizer as default, and add a regularization term to increase
the generality of the model. We will exhibit specific details in the
examples.

3.2 Real-Time Decision-Making Via Model Predictive
Control

3.2.1 Uncertainty-Aware Model Predictive Control Formula-
tion. In the robust MPC formulation in Eq. (5), the constraints
are formulated as hard constraints to account for disturbances that
are assumed to be bounded within a predefined set. The tube
around the nominal trajectory is specified to ensure that all possible
realizations of the bounded disturbances remain within this tube, as
shown in Fig. 2(c). However, for those disturbances that are not
bounded (e.g., Gaussian noises), it is nearly impossible to guarantee
the satisfaction of hard constraints. In this case, the constraints are
relaxed into probabilistic (chance) constraints, ensuring that they
are satisfied with a specified probability [45]. Therefore, the tubes
are derived probabilistically based on the distribution of the distur-
bances [46]. This approach acknowledges that disturbances may not
have strict bounds but instead follow a known or estimated proba-
bility distribution. When a confidence level α (e.g., α = 0.95) is
specified, the tube bounds can be explicitly calculated to encapsu-
late 95% of the disturbance realizations. This probabilistic bound-
ing allows for the construction of stochastic tubes that balance
conservatism and feasibility, providing a probabilistic guarantee
of constraint satisfaction. Importantly, the probabilistic nature of
the tube makes stochastic MPC less conservative than robust
MPC while still accounting for uncertainty effectively.
Let us assume that the constraints are only enforced on states and

control input. The uncertainty-aware MPC with the single-step non-
linear dynamics and probabilistic constraints can be formulated as

min
u

Ew[J(u, x, r, w)] (12a)

s.t. xk+i+1 = Fw(xk+i, uk+i, wk+i) ∀ i ∈ N[0,N−1] (12b)

Pr x(j)k+i ∈ X
( )

≥ α ∀ i ∈ N[0,N−1] ∀ j ∈ N[1,nx] (12c)
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uk+i ∈ U ∀ i ∈ N[0,N−1] (12d)

wherew = [wk , . . . , wk+p−1] represents the sequence of random var-
iables for disturbance vectors and nx denotes the dimension of the
vector x.
The optimization problem presented in Eq. (12) poses significant

computational challenges due to its probabilistic constraints and
the need to consider uncertainty propagation across the predic-
tion horizon. While the formulation elegantly captures the
uncertainty-aware nature of the control problem, its direct imple-
mentation is computationally intractable, particularly for real-time
applications.

3.2.2 Reformulation With Quantiles and Constraint Tighten-
ing. To address this computational challenge, the uncertainty-
aware MPC problem is reformulated using the quantile information
and constraint-tightening techniques with an ancillary controller
design. The predictive model in Eq. (11) provides information
about the upper and lower bounds of future states, which can be
directly utilized to ensure constraint satisfaction under uncertainty.
The problem from Eq. (12) can be reformulated as

min
v

J(v, x̂, r) (13a)

s.t. [�̂x
f
k , ˜̂x

f
k , x̂

f
k]

T = TiDE(xpk , u
p
k , u

f
k , d

p
k , d

f
k|ϕ) (13b)

�̂x j,k+i ≤ x j,ub ∀i ∈ N[0,N−1] ∀ j ∈ N[1,nx] (13c)

x̂ j,k+i ≥ x j,lb ∀ i ∈ N[0,N−1] ∀j ∈ N[1,nx] (13d)

vk+i ∈ U⊖KZk+i ∀ i ∈ N[0,N−1] (13e)

uk = vk +Kek (13f )

where the subscripts “ub” and “lb” denote the upper and lower
bounds, respectively, the subscript j represents the index of the
state vector x, v = vk , vk+1, . . . , vk+N−1[ ] denotes the sequence of
the nominal control inputs (which are the decision variables),
ek = xk − ˜̂xk represents the deviation between the actual and pre-
dicted states, and Zk+i is the set of the quantile bound at time k + i.
Theoretically, the optimal value ofK can be determined using the

LQR for linear tube-based robust MPC [8,16]. This value plays a
crucial role in stabilizing the system and preventing the estimation
error bound from diverging during multistep-ahead prediction. It
also influences the level of conservativeness in estimating error
bounds when propagating noise through recursive rollout.
However, for nonlinear (and even unknown) systems, LQR
cannot be used to obtain K, and it must be fine-tuned or optimized
using black-box methods such as Bayesian optimization [47]. It is
important to note that optimizing K is beyond the scope of this
work. In contrast, TiDE directly captures the actual distribution
from the open-loop data, unlike tube-based robust MPC. Therefore,
the value of K does not affect the conservativeness of the predicted
error bounds. In online solving, the value of K tightens the design
space of uk to account for system disturbances. This is demonstrated
in the example provided, which can also be derived from the Riccati
equation [16]. A more rigorous implementation would involve con-
tinuous linear approximations [48] on the TiDE model and deriving
K. However, this is also beyond the scope of our work.
The state constraints from Eqs. (13c) and (13d) are managed

through the quantile information derived from the predictive
model. By utilizing these bounds, we can guarantee that the
system states remain within their feasible region with the specified
probability level α. This approach effectively transforms the proba-
bilistic state constraints into deterministic bounds based on the pre-
dicted quantiles of the state distribution.

For the control input constraints in Eq. (13e), a more careful strat-
egy is necessary to ensure that the actual applied control actions
remain within the physical limitations of the controller or actuator.
The control input constraints are tightened [18,39,49] to accommo-
date the additional control effort that may be required by the ancil-
lary controller in Eq. (13f). The ancillary controller is used for
rejecting the real-time disturbance while maintaining the satis-
faction of the original constraints [50]. In this study, a linear
representation is chosen for computational efficiency. The
constraint-tightening technique creates a safety margin that can
avoid the actual state xk and the total control input uk violating
the original constraints X and U, respectively.

3.3 Optimization Setup. Although one motivation of simulta-
neous multistep MPC is to accelerate the solving process of MPC
by parallelizing the state prediction in one shot, in this work, we
implement other techniques to further accelerate the optimization
process, making the MPC solvable in actionable time. Here we
detail the methods and algorithms used to accelerate the solving
process of MPC.

3.3.1 Gradient-Based Optimization With Automatic Differen-
tiation. One way to accelerate the solving process of MPC using
a numerical optimization solver is to apply gradient-based optimiza-
tion with automatic differentiation [22]. The key idea is to acquire
an analytical evaluation of the first-order derivative of the loss func-
tion with respect to the design variables (control input u) and use the
gradient information to perform gradient-based optimization. Since
the evaluation of the MPC loss J(u, x̂, r) as well as TiDE are both
computed using PyTorch [51], the gradient of MPC loss
∂J(u, x̂, r)/∂u can be obtained analytically using backpropagation
instead of numerical approximations such as finite difference, as
shown in Fig. 5. Lastly, in this work, we choose l-bfgs [52]
with a Pytorch wrapper developed by Feinman [53] as MPC’s
numerical optimizer. The l-bfgs is a light memory-used algo-
rithm that approximates the Hessian (second-order derivative)
using the first-order derivative of the loss function. Since the gradi-
ent information can be obtained automatically, the evaluation of the
Hessian can also be done in only one function evaluation. As a
result, the integration of l-bfgs and Pytorch enables efficient
gradient-based optimization by utilizing cheap but accurate gradient
evaluation.

3.3.2 Penalty Method: Augmented Lagrangian Method.
However, even when the gradient of the objective function can be
automatically computed, evaluating the optimality conditions in
l-bfgs when constraints are enforced still requires additional
numerical approximations of second-derivative terms, resulting in

Fig. 5 Illustration of gradient-based optimization using
autodifferentiation
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a significant increase in function evaluation time and computational
speed. Therefore, we employ the penalty method to transform the
constrained optimization problem into an unconstrained optimiza-
tion problem. By directly incorporating the penalty terms into the
objective function, we convert the hard constraints into soft con-
straints, thereby bypassing the evaluation of the optimality condi-
tions associated with constraint optimization.
In particular, we use the augmented Lagrangian method [52] for

the penalty method. Assume the objective function for the con-
strained MPC/robust MPC is J(u, x̂, r) with constraint ci(u, x), i ∈
E generalized for both equality and inequality constraints, where E
is the number of constraints. The augmented Lagrangian method
then solves the following unconstrained optimization problem by
adding the constraints as a penalty:

min
u

Φs(u, x̂, r) = J(u, x̂, r) +
μi
2

∑
i∈E

[ReLU(ci(u, x̂))]2

+
∑
i∈E

λiReLU(ci(u, x̂))
(14)

where s indicates the sth iteration when solving the optimization
problem. Both μi and λi are the penalty parameter and the estimated
Lagrange multiplier corresponding to the ith constraint and follow
the updating rules:

μi ← αμi (15)

λi ← λi + ReLU(ci(us, x̂)) (16)

where α > 1 is the increasing rate of μi, and us is the solution for
solving unconstrained optimization (Eq. (14)) at iteration s. In
this work, we select λ0 = 10, μ0 = 1, and α = 3 from trial and
error that balance constraint satisfaction and convergence rate. In
the next iteration, the solver will resolve the problem using us as
the initial guess for a warm start. Here, we apply the ReLU() func-
tion in Eq. (14) because it is a continuous and differentiable func-
tion that only penalizes Φs when the constraints ci are violated,
enabling the smooth computation of the gradient of Φs.
While the augmented Lagrangian method introduces some devia-

tion from strict Karush–Kuhn–Tucker (KKT) conditions to improve
numerical stability and feasibility, it still provides robust handling
of both equality and inequality constraints. Furthermore, it avoids
the ill-conditioning issues of pure penalty methods using Lagrange
multipliers, reducing sensitivity to the penalty parameter. Lastly, it
converges more efficiently to feasible solutions, even for problems
with nonlinear constraints [52].
Lastly, the warm start is used to provide a potential starting point

near the optimal solution, i.e., the optimal solution from the previ-
ous step is used as the initial guess for the current step. Also, if
warm starting MPC is unable to identify a feasible solution, the
MPC will terminate the optimization and use the predefined
control input to achieve feasibility of online operation.

4 Illustrative Example
We first verify the proposed method using a linear invariant

system so that the result can be compared with the tube-based

method, which is one of the most widely adopted robust MPC
methods. This section provides a complete walk through by intro-
ducing the physical system, developing the virtual system, building
the virtual-to-physical connection via robust MPC, and result vali-
dation and comparison.

4.1 Physical System. A discrete linear system is selected for
demonstration. The system with exogenous noise on input ϵk ∼
N (0, 0.12) is formulated as follows:

xk+1 =
0.3 0.1
0.1 0.2

[ ]
xk +

0.5
1

[ ]
uk + ϵk( ) (17)

=Fw(xk , uk , wk) (18)

where the disturbance vector is the multiplication of matrix B and
the noise vector ϵk , i.e., wk = Bϵk, which also follows a Gaussian.

4.2 Virtual System

4.2.1 Data Generation and Model Training. The development
of the virtual system in our work follows the steps of stage 1 in
Fig. 1. To generate state trajectories for system identification
using TiDE, a sequence of input Du = {u0, , un−1}, where u ∈
[ − 5, 5] is uniformly sampled with a size of n = 422, 000. By
setting the initial state x0 = [0, 0]T , the trajectory of Dx =
{x1, , xn} can be simulated using u as the input. Furthermore,
both Du and Dx are divided into fractions using the moving
window approach, with each fraction having a length of w + N.
In this case, the window size is w = 10, and the horizon length is
N = 10. By denoting the lth fraction as Dl

u = {ul, , ul+w+N−1} and
Dl

x = {xl, , xl+w+N−1}, respectively, we can assign x p =
[xl+1, , xl+w] as the past target, x f = [xl+w+1, , xl+w+N] as the
future target, with u p = [ul, , ul+w−1] and u f = [ul+w, , ul+w+N−1]
as the past and future covariates (inputs), respectively. Then, Dl

x
and Dl

u are further split into training, validation, and test sets with
a 8:1:1 ratio. Following Eq. (6), the TiDE model for identifying
this system can be trained via supervised learning using quantile
loss, which is formulated as

min
ϕ

LQ(xf , x̂f ) (19a)

s.t. x̂f = TiDE(xp, up, uf |ϕ) (19b)

The details of the training and model setup are described in
Table 2. The training and validation loss is shown in Fig. 6(a).

4.2.2 Model Evaluation. We first evaluate the accuracy of
TiDE using the test set. Quantitatively, the mean absolute percent-
age error (MAPE) and the relative residual mean square error
(RRMSE) for the predicted x1 and x2 achieve [5.96%, 5.05%]
and [0.0419, 0.0414], respectively, showing the high predictive
capability of TiDE. Qualitatively, as shown in Figs. 6(c) and
6(d ), the tube (i.e., the error interval bounded by the 0.95 and
0.05 quantiles), as well as the median of the predicted values of
x1 and x2 by TiDE, is compared with the validation data (with

Table 2 Hyperparameters of training the TiDE model

Details for TiDE model setup

# Encoder layers # Decoder layers Decoder output dim. Hidden size Decoder hidden size Dropout rate Layer normalization
1 1 16 128 32 0.2 True

Details for TiDE model training

Learning rate Regularization Step size Rate decay # Epoch Batch size Shuffle data
0.001 0.002 10 0.95 1500 64 True
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noise injected) using a randomly selected fraction in the test set. As
can be seen from the figure, the predicted median matches the val-
idation data well with slight deviation, and the validation data are
mostly bounded by the upper and lower quantiles. This shows the
capability of TiDE to capture the dynamics of the system and to
quantify the uncertainty of the prediction even when the training
data are noisy.
In Fig. 6(b), we compare the predicted median of x1 ˜̂x1,k+1 : k+N

and the ground truth (obtained from the system model without
injected noise) using the optimal control input u∗k obtained by
solving Eq. (20) with a step function as the reference. Here, we
demonstrate that the optimizer successfully solves the MPC
problem that minimizes the reference tracking error using the
multistep-ahead prediction by TiDE. By examining the results,
we observe that the predicted response shares a similar trend with
the true response. This test validates the optimization capability
of TiDE as the multistep-ahead predictor in MPC.

4.3 Virtual-to-Physical Integration. The bidirectional inter-
action between the physical and virtual systems is constructed
with robust MPC, where the current state of the physical system
is fed back to the virtual system as its prediction input. Furthermore,
an optimal control input is solved by an online robust MPC, using
the predicted quantiles as the safety buffer to explicitly handle con-
straints under uncertainty. Then, the optimal control input is applied
to the physical system.
The goal of this example is to use robust MPC to perform a ref-

erence tracking task on x1, while maintaining x1, x2, and u within
the feasible regions subjected to unbounded disturbance. The mul-
tistep robust MPC using the quantile prediction from TiDE can be
formulated as

min
v

J(v, ˜̂x, r) =
∑N−1
i=0

‖ ˜̂x1,k+i+1 − rk+i+1‖2Q + ‖vk+i‖2R (20a)

s.t. x̂fk+1 = [�̂x
f
k+1, ˜̂x

f
k+1, x̂

f
k+1]

T = TiDE(xpk , u
p
k , v) (20b)

v = [vk , , vk+N−1] (20c)

Pr x̂1,k+i ≥ −2
( )

≥ 0.95 ∀ i ∈ N[1,N] (20d)

Pr x̂1,k+i ≤ 2.5
( )

≥ 0.95 ∀ i ∈ N[1,N] (20e)

Pr x̂2,k+i ≥ −3.5
( )

≥ 0.95 ∀ i ∈ N[1,N] (20f )

Pr x̂2,k+i ≤ 3.5
( )

≥ 0.95 ∀ i ∈ N[1,N] (20g)

vk+i ∈ U⊖KZk+i ∀ i ∈ N[0,N−1] (20h)

uk = π(vk) = vk +Kek (20i)

upk = [uk−w, . . . , uk−1] (20j)

Both Q and R are set to I. The original input bound is
U ∈ [− 5, 5], while it is dynamically tightened based on the predic-
tion error bound Z. The linear regulator K = [− 0.0621, − 0.2027]
is assigned in this case. Furthermore, since the predicted upper and
lower quantiles have already taken into account the probabilistic
bounds on x̂1,k, the constraints in Eqs. (20d)–(20g) can be rewritten
as

�̂x1,k+i ≤ 2.5, x̂1,k+i ≥ −2 (21a)

�̂x2,k+i ≤ 3.5, x̂2,k+i ≥ −3.5 (21b)

The performance of the proposed robust MPC method is com-
pared with the multistep MPC without uncertainty awareness
(so-called nominal MPC) in Fig. 7. In this example, the reference
trajectory is designed to overlap with the bounds of x1 and will
violate the bounds of x2 during this reference tracking task,
aiming to test the constraint handling capability of robust MPC at
extreme scenarios. As can be seen from Fig. 7(a), where the
nominal multistep MPC is solved without considering the uncer-
tainty of the prediction, the result yields significant constraint vio-
lations due to the disturbance. Since the gain of the ancillary
controller is small in this case, the applied input is almost identical
to the nominal input. Figures 7(b)–7(d ) compare the nominal TiDE
prediction and the ground truth at different instances when the
optimal control input sequence is solved. Here, the ground truth
(green line) is verified by simulating Eq. (18) without disturbance.
As a result, even though the discrepancy between the nominal pre-
diction and the ground truth is not significant, indicating the accu-
racy of the prediction, the optimal control input only provides
ideal solutions that minimize the MPC loss but ignore the impact
of uncertainty and do not provide a safety buffer to accommodate
disturbance.
In contrast, the proposed robust MPC method explicitly uses the

learned quantile as the tube to provide an optimal control input that
compromises the tracking performance in exchange for safety
buffers to increase the chance of constraint satisfaction, as shown
in Fig. 7(e). By taking a closer look at Figs. 7( f ) and 7(g), we
can see that the error bound (tube) is explicitly used when solving
the constrained MPC, i.e., the robust MPC provides the solution
where the predicted quantiles satisfy the constraints. Since the
learned quantiles have already captured the possible state distribu-
tion under disturbance, the proposed robust MPC consequently
allows future states to deviate from nominal values while still satis-
fying constraints.
Finally, we compare the distribution of the output trajectories

with tube-based MPC as the benchmark using 1000 replicates.
Tube-based MPC [16] is a well-established, computationally effi-
cient, and widely understood and applied approach that provides
robust constraint satisfaction, particularly effective when the
system is linear. However, since the error bound in tube-based
MPC is approximated using the worst-case scenario, it may be
too conservative in practical applications. Figure 8 illustrates the
distribution of the trajectories, where the thick lines represent the
median of the trajectories at each time instance, and the color

Fig. 6 Evaluation of TiDE. (a) The training and validation loss of
TiDE. (b) Comparison of the state prediction and the ground truth
in a single MPC step. (c) One-shot prediction of the median and
quantiles of x1. (d) One-shot prediction of the median and quan-
tiles of x2.
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shades indicate the interval between 0.05 and 0.95 quantiles. In this
study, we examine the 1000 replicates at each time-step to calculate
the constraint violation rate. We then use the maximum rate among
the entire trajectory to represent the failure rate of each method.
Figure 8(a) shows that without robust consideration, MPC easily
violates the constraint, resulting in a 56.3% failure rate. In
Fig. 8(b), although tube-based MPC yields a 6.2% failure rate and
exhibits reliable performance, the margin between the lower bound
of x1 and the reference/constraint is significant, echoing the over-
conservative feature. On the other hand, in Fig. 8(c), the proposed
robust MPC achieves a 5.8% failure rate and exhibits a smaller
margin compared to that from the tube-based MPC. These results
suggest that the learned quantile can be utilized as UQ while per-
forming robust MPC. Furthermore, since TiDE directly learns the
multistep-ahead response distribution from the data rather than
approximating the error bound through uncertainty propagation,
the simultaneous multistep robust MPC exhibits less conservative
uncertainty estimation, leading to improved performance.

5 Engineering Case Study: Directed Energy Deposition
Additive Manufacturing
In this section, we implement the proposed multistep robust MPC

as the online decision-making process for the digital twin of the
directed energy deposition (DED) AM system. Given the inherent
uncertainty associated with material variability and environmental
factors in the DED process, proactive control strategies, such as
MPC, become crucial to achieve desired material properties while
minimizing defects [54]. Furthermore, the intricate dynamics of
the melt pool make it challenging to develop a physics-based
model capable of providing accurate predictions in real-time. There-
fore, data-driven methods have become promising tools for address-
ing this challenge.
In this case study, our digital twin focuses exclusively on the melt

pool rather than the entire part to enable real-time decision-making
for process control. The melt pool is the most dynamic and sensitive

region of the process, where critical quality indicators such as
porosity, microstructure, and residual stress originate. Modeling
the entire part with sufficient fidelity for in situ control would be
computationally prohibitive and incompatible with the actionable
time requirements of online decision-making. In contrast, a melt
pool-level digital twin allows for high-resolution, low-latency
predictions that align with the frequency and spatial resolution of
available in situ sensing data, such as pyrometer readings. More-
over, control inputs like laser power directly influence melt pool
behavior, making it the most actionable domain for decision-
making via MPC. By concentrating modeling efforts on the melt
pool, the digital twin remains both computationally tractable and
operationally relevant, enabling accurate state prediction and
MPC throughout the build process.
The digital twin of the DED process in this work comprises three

key modules: (a) the physical system, represented by a high-fidelity
finite element analysis (FEA) simulation, (b) the virtual system,
implemented as a TiDE model that predicts melt pool temperature
and depth, and (c) the virtual-to-physical integration, achieved
through the proposed robust MPC framework. At each MPC time-
step, the current melt pool temperature and depth are extracted from
the physical system and used as feedback to the virtual system. The
virtual system then predicts future melt pool behavior conditioned
on both the feedback and the candidate control input, which is sub-
sequently optimized by the robust MPC. Once the optimal control
input is determined, it is applied to the physical system, completing
the bidirectional interaction between the physical and virtual
domains.

5.1 Physical System: Directed Energy Deposition Setup. In
this study, the physical DED is replaced by an in-house developed
explicit FEA code developed by Liao et al. [55]. The code is accel-
erated by GPU computation using CuPy. It is employed for
part-scale transient heat transfer simulation of the DED process.
We select a single-track square as the target geometry, as shown
in Fig. 9, and its specifications are listed in Table 3. This numerical

Fig. 7 Comparison of simultaneousmulti-step MPC with and without robust consideration. (a) Trajectories of the states and input
under multi-step (nominal) MPC. (b), (c), and (d) show the selected highlights of x1 and x2 from (a) where the constraints are active.
(e) Trajectories of the states and input under multi-step robust MPC. (f), (g), and (h) show the selected highlights of x1 and x2 from
(e) where the constraints are active
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setup allows efficient simulation of complex thermal dynamics
while maintaining high accuracy in capturing melt pool behavior.
Here, we highlight that since the layer height is 0.75mm, we can
set xdepth,lb and xdepth,ub to 0.225 and 0.075, corresponding to

10% and 30% dilution. For the details of the setup of DED,
feature extraction, and data processing, please refer to our previous
work [56] for the technical details.

5.2 Virtual System: Surrogate Modeling for the Melt Pool
of Directed Energy Deposition. To effectively generate a

variety of laser power profiles, the design of experiment of the
time series of the laser power profile is implemented. This
method, proposed by Karkaria et al. [3], represents each time
series with a 10-dimensional space using the Fourier transform
and generates laser power trajectories using Latin hypercube sam-
pling. For details of this approach, please refer to our previous
work [3,56]. A total of 100 simulations with varying laser power
profiles are conducted. The melt pool temperature and depth are
extracted from the FEA model at each time-step. This diverse
dataset ensures that TiDE can learn the relationship between
process parameters and thermal responses across a wide operational

Fig. 8 Distribution of trajectories under 1000 replicates. (a) Trajectories of multistep (nominal) MPC (b) Trajectories of tube-based
robust MPC and (c) Trajectories of the proposed robust MPC.
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range. As the data are generated, we train a TiDE model as a mul-
tivariate multistep-ahead predictor with window size w = 50 and
horizon size N = 50, and the 0.95 and 0.05 quantiles are assigned
as the upper and lower bounds. The specifics of training details,
as well as model evaluation, are provided in our previous work
[56]. As a result, the MAPE and the RRMSE for melt pool temper-
ature predictions are 1.29% and 0.054, respectively, and those for
the melt pool depth are 4.25% and 0.0441.
In our simulation, the primary sources of data uncertainty are the

numerical errors in the FEA simulation. Specifically, since the
laser’s travel distance at each simulation time-step does not corre-
spond to the element size, the heat treatment time of each element
will vary, resulting in substantial fluctuations in both melt pool tem-
perature and depth. Consequently, these fluctuations will over-
shadow the effects of injected uncertainties on material variability
or disturbances of our quantities of interest. This variability intro-
duces aleatoric uncertainty, which TiDE effectively captures
through its quantile-based predictions. Although this type of noise
is repeatable, it appears to be irreducible by increasing data collec-
tion, as evidenced by the TiDE prediction. In fact, TiDE only
extracts the pertinent features and smooths the nominal (median)
response using the dense encoder. It then allows the learning quan-
tile to handle the fluctuations within the training set. Given the
objective of this work to demonstrate how the predicted model
quantifies uncertainty and leverages it to enhance decision-making
in digital twins, we contend that this source of uncertainty presents a
more extreme scenario to evaluate the efficacy of the proposed
method.

5.3 Virtual-to-Physical Integration: Robust Model Predic-
tive Control for Directed Energy Deposition. The objective of
implementing MPC in DED is to establish a proactive control strat-
egy that effectively mitigates defects when an arbitrary reference
trajectory for melt pool temperature is provided. In DED, porosity
emerges as the most prevalent and critical defect, directly impacting
the mechanical properties of printed components. Therefore, to mit-
igate defects, it is suggested to maintain the melt pool depth within a
dilution range of 10–30% to avoid interlayer and intralayer porosity
[57]. Here, we assume that the melt pool depth is observable. In our
previous work [56], the simultaneous multistep MPC has been

successfully implemented in melt pool depth constraint handling,
using only nominal MPC. However, due to the intrinsic aleatoric
uncertainty in the collected data and the processing environment,
we aim to extend our previous work to perform robust MPC to
enhance the constraint satisfaction rate.
The robust MPC for melt pool temperature tracking can be for-

mulated as

min
u

∑N−1
i=0

‖x̂temp,k+i+1 − rtemp,k+i+1‖2Q + ‖Δuk+i‖2R
[ ]

(22a)

s.t. Pr x̂depth,k+i ≥ xdepth,lb
( )

≥ 0.95 ∀i ∈ N[1,N] (22b)

Pr x̂depth,k+i ≤ xdepth,ub
( )

≥ 0.95 ∀ i ∈ N[1,N] (22c)

[x̂ f
temp,k+1, x̂

f

depth,k+1]
T = TiDE(x p

temp,k , x
p

depth,k, d
p : f
x,k ,

d p : f
y,k , z p : fk , u p : f

k )

(22d)

uk+i ∈ U : = {u ∈ R | 504W ≤ ui ≤ 750W} (22e)

where Δuk+i−1 represents the differences between two consecutive
terms in the designed future laser power, and the distance
between the laser nozzle and the closest edge on the x- and
y-directions are denoted as dx and dy, respectively. z represents
the nozzle location on the z-direction. These three quantities are
determined based on the geometry and are treated as additional
covariates to enhance the prediction capabilities of TiDE. In this
case, we do not tighten the input bound since the bounds will not
be active throughout the process.

5.4 Model Predictive Control Results. The outcomes of
implementing a robust MPC algorithm in DED are presented in
Fig. 10, where they are compared with the results obtained using
unconstrained MPC and constrained MPC (which employs
nominal prediction only), all employing the identical TiDE model
as the multistep-ahead predictor. For a more detailed analysis, we
have selected the trajectory from layer 5 as the representative.
Figure 10 illustrates the trajectory across the entire layer, encom-
passing the start of a new layer, the abrupt temperature fluctuations
at three corners due to the sharp change in scanning velocity, and
the termination of the layer where the laser power is turned off.
Given that the temperature/depth jumps and drops at the corners
are unavoidable, we disregard the constraint violation penalty
within a radius of 1 mm centered on the turning point.
Figure 10(a) presents a comparison of the trajectory of melt pool

temperature and depth, along with the corresponding laser power
input. The unconstrained MPC demonstrates exceptional reference
tracking performance, with its trajectory yielding r2 = 0.9730 (for
the entire trajectory) compared to the reference. This affirms the
effectiveness of employing TiDE as a surrogate for multistep
MPC. However, as constraints are enforced, the constrained MPC
compromises its reference tracking performance in favor of con-
straint satisfaction, where r2 drops to 0.8261. As depicted in the
figure, the resulting melt pool depth precisely adheres to the
upper bound of the depth constraint. Nevertheless, since only
nominal predictions are utilized in MPC and a safety buffer is not
established, the constrained MPC occasionally violates the depth
constraint. In contrast, robust MPC takes into account the potential
state distribution, thereby generating a larger safety buffer from the
melt pool depth constraint. Consequently, it effectively mitigates
the constraint violation rate by compromising more on reference
tracking, which results in r2 = 0.6920.
Figures 10(b)–10(d ) highlight the critical regions on melt pool

depth that are worth close examination. The upper subfigures

Fig. 9 Single-track square

Table 3 Specification of the printed square

Item Quantity

Side length 40mm
Track width 1.5mm
Layer height 0.75mm
Num. of layers 10 layers
Element size 0.375mm
Num. of elements 40,540
Substrate height 10mm
Scanning speed 7mm/s
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zoom in on the comparison of the trajectories, while the lower sub-
figures present the predicted median and tube resulting from the
optimal control inputs solved by robust MPC. Figure 10(b) illus-
trates the rise at the beginning of the layer, where the trajectory
of the constrained MPC violates the constraint. It is evident that

the upper bound of the tube is utilized in robust MPC to adjust to
the constraint, accommodating the disturbance during the process.
Figure 10(c) exhibits that TiDE, along with its predicted tube, cap-
tures the distribution of depth variation at the corner. Figure 10(d )
illustrates that since the laser power will be deactivated, and the fea-
sible solution is not attainable from time-step 2960 until the end of
the layer because the lower bound cannot be satisfied, the lower
bound constraint is relaxed in this region to ensure feasibility.

5.5 Computational Time. The histogram presented in Fig. 11
illustrates the computational time required to solve the uncon-
strained, constrained, and robust MPC problems at each step, com-
puted using an AMD Ryzen Threadripper PRO 3975WX 32-Cores
CPU. The results demonstrate that the average computational time
for robust MPC is 0.1793 s, with a maximum of 0.903 s. These find-
ings indicate that the proposed method can be effectively applied in
various real-world scenarios, enabling real-time decision-making
for digital twins. The relatively faster solving time of robust MPC
compared to unconstrained MPC can be attributed to the creation
of a safety buffer by the tube constraint. This buffer limits the fea-
sible solution space, potentially leading to a shorter optimization
process. Furthermore, robust MPC also results in a shorter solution
time compared to constrained MPC. The primary reason for this is
that constrained MPC encounters more constraint violations, requir-
ing more iterations to converge. This is because employing an

Fig. 10 DED result comparison. (a) Trajectories of melt pool temperature, melt pool depth, and the corresponding laser power
input. (b), (c), and (d) are the selected highlights comparing the details of the trajectories from different MPC methods, as well
as the predicted medians (dashed lines) and tubes (shaded area) at particular time-steps.

Fig. 11 Histogram of MPC solving time
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infeasible solution as the initial guess for the penalty method
hinders its constraint handling capability.
This case study verifies the suitability of our method for complex

engineering applications. It highlights TiDE’s capability as a surro-
gate model for multistep predictions with UQ and demonstrates the
effectiveness of multistep robust MPC in efficiently handling con-
straints and solving MPC problems. The integration of these
approaches presents a robust and practical framework for decision-
making processes of the digital twin of engineering systems.

6 Closure
This work proposed a simultaneous multistep robust MPC frame-

work that integrates TiDE with quantile regression to enable real-time
decision-making for digital twins with uncertainty awareness. By
leveraging TiDE’s capacity for multistep predictions and efficient
UQ from quantile regression, the proposed framework demonstrated
an effective approach to quantify aleatoric uncertainty, and further
benefit solving robust MPC with a series of acceleration techniques
using automatic differentiation. In contrast to conventional single-step
MPC approaches that necessitate recursive rollout for state prediction
and conservative uncertainty approximation, the simultaneous multi-
step predictions reduced the number of function calls associated with
recursive state propagation. Furthermore, the quantile-based uncer-
tainty representation improved constraint satisfaction in the presence
of stochastic disturbances. Through the validation of numerical sim-
ulations and engineering case studies employing DED, we demon-
strate the exceptional surrogate modeling capabilities of TiDE for
complex system dynamics with multistep-ahead prediction. Further-
more, we highlight the potential of this learning-based MPC frame-
work to provide precise and proactive control strategies for
intricate, nonlinear systems. This establishes a foundation for future
advancements in uncertainty-aware digital twin applications.
While this work demonstrates substantial advancements, several

limitations remain. To begin with, the effectiveness of the proposed
framework relies heavily on the quality and diversity of the training
data, which may limit its generalizability to scenarios involving
unseen disturbances or operating conditions not captured during
model training. Additionally, while TiDE reduces computational
overhead compared to traditional methods, the computational
demands may still pose challenges for real-time applications with a
high-dimensional design space. Furthermore, the current implementa-
tion lacks mechanisms for dynamic adaptation to evolving system
dynamics or disturbances beyond pretrained models, which could
limit its robustness in highly variable environments. Moreover, we
only demonstrate the effectiveness of the proposed method on
stable systems, while it might be challenging for the implementation
of unstable systems. Lastly, this study does not carry out comprehen-
sive proofs of stability, recursive feasibility, performance guarantee,
convergence, etc. These limitations highlight opportunities for
future work to enhance the framework’s adaptability, efficiency,
and applicability across more complex and unpredictable systems.
In the future, we will develop a framework that enables the

dynamic adaptation of the surrogate model through effective param-
eter fine-tuning methods. This will enhance the resilience, trustwor-
thiness, and flexibility of the surrogate model as well as the
decision-making process, thereby fulfilling the full potential of
digital twin systems.
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