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and Estimation for Complex
Systems With Dynamic
Performances
Simulation models play crucial roles in efficient product development cycles, therefore
many studies aim to improve the confidence of a model during the validation stage. In
this research, we proposed a dynamic model validation to provide accurate parameter set-
tings for minimal output errors between simulation models and real model experiments. The
optimal operations for setting parameters are developed to maximize the effects by specific
model parameters while minimizing interactions. To manage the excessive costs associated
with simulations of complex systems, we propose a procedure with three main features: the
optimal excitation based on global sensitivity analysis (GSA) is done via metamodel tech-
niques, for estimating parameters with the polynomial chaos-based Kalman filter, and vali-
dating the updated model based on hypothesis testing. An illustrative mathematical model
was used to demonstrate the detail processes in our proposed method. We also apply our
method on a vehicle dynamic case with a composite maneuver for exciting unknown
model parameters such as inertial and coefficients of the tire model; the unknown model
parameters were successfully estimated within a 95% credible interval. The contributions
of this research are also underscored through multiple cases. [DOI: 10.1115/1.4050107]

Keywords: model validation, excitation, parameter estimation, maneuver design, global
sensitivity analysis, Kriging, design and analysis of computer experiment (DACE),
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1 Introduction
Technological advances have resulted in products with an

increasing number of subsystems and components; this has, in
turn, made the modeling of complex systems increasingly central
to efficient design and product development. For example, in
vehicle design, simulations can aid the design of various subsys-
tems—such as the suspension and chassis, controllers, safety assis-
tance systems, and various ergonomic elements [1]. The reliability
and robustness of these simulations are of critical importance when
applied to the motion planning and driving strategies of autono-
mous vehicles [2,3]. Computer models that yield high-confidence
results support engineers who must make precise, high-quality
decisions.
However, although the model validation process is already

mature [4], developing an accurate computer model is still a difficult
task. Allen et al. proposed that model validation should account for
cases where inconsistencies can occur between computer models
and real-world system responses [5]. These cases include the
following:

• Model formulation
• Simulation programing
• Parameter estimation/identification
• Numerical accuracy and stability

Of these four cases, parameter estimation remains the toughest
and yet most vital problem. Its two sources of difficulties are (1)
the coupling/interaction of parameters and (2) measurement noise
in real model experiments [6,7]. Because unobservable parameters
can only be inferred from the system output, it is almost impossible

to identify their real values, and multiple sets of possible solutions
may be obtained instead. To address these problems, one must con-
sider how to increase the identifiability for multiple parameters in
the validation stage.
In vehicle engineering, although measurement tools, mathemati-

cal theories, and simulation environments are well established, few
studies have rigorously connected validity analysis of computer
models with experimental test data. Typical testing strategies for
validating vehicle models follow the vehicle dynamic test maneu-
vers proposed by the International Organization for Standardization
(ISO). For example, Setiawan et al. tried to validate a
14-degrees-of-freedom vehicle model [8] in the context of double
lane change maneuvers [9], and Gawade et al. used the average
radius of trajectories under steady-state circular driving as a
model accuracy index [10]. These testing methods, however, are
designed for assessing hardware performance in specific scenarios
but not for validating simulation models. Methods for designing
operations based on the model validation requirements, such as
uncertainty quantification and decoupled parameter effects, are
not yet established in the field of vehicle engineering.
Various popular methods for exciting the effects on the parame-

ters have been applied in diverse engineering fields. For example,
with robot excitation trajectories which are compositions of frac-
tions of spline curves, by optimizing fitness functions with
trajectory-forming matrix and coupling indices, the inertial terms
and several parameters of friction models are estimated under the
designed operation using the method of least squares [11,12].
Another example in parameter identification of aircraft’s control
surfaces, parameters are estimated and identified in a single
designed and composite flight via Wavelet transform [13]. For
autonomous vehicles, Tsai and Chan observed that the effects of
sensing errors contribute different trajectory uncertainties; they
also performed a procedure on the excitation and quantification of
each source of sensing errors [14]. Other excitation techniques,
such as natural excitation technique [15] and persistent excitation
[16], are mature and widely used methods for analyzing structures
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and machine tools, respectively. With the reviews from practical
applications, it is concluded that when designing excitation opera-
tions, operations should be parameterized and uncertainties
should be quantified and sorted.
Inspired from the engineering applications and the lack of sys-

tematic frameworks on connecting excitation and estimation of
model parameters, in this work we propose a general procedure
for model parameter excitation and validation. Parameter screening
and sensitivity analysis are first conducted to identify importance of
parameters [17]. However, not all important parameters can be
directly observed and quantified, especially for dynamic systems
with varying parameter values. In addition, experiments might not
be able to reflect the differences of the parameters of interest. There-
fore, in this work, experiments are redesigned to provide valid
parameter estimations. Our procedure therefore include a prior
screening to identify important parameters, experiment design to
maximize the ability to observe the changes in the parameter
values, and the estimations of parameter values based on the
designed excitation experiments. In what follows, details of the
steps will be elaborated with examples.
This paper introduces the proposed method, along with its verifi-

cation and implementation in an engineering case by assuming that
the only difference between a computer model and a real system is
the deviation of model parameters. Sections 2 and 3 detail the
implementation. Applicability verification and accuracy assess-
ments are expressed in terms of an illustrative mathematical
model in Sec. 4. In Sec. 5, details of a three-wheeled x-by-wire
(manipulated by control units) vehicle model are described; the pro-
posed method is validated through this dynamic model. Section 6
concludes the research with discussions on the necessity of design-
ing excitation operations.

2 Parameter Excitation Through Global Sensitivity
Analysis
Our proposed method, based on our conceptual design, is illus-

trated in Fig. 1 with two stages: excitation and estimation.
First, in the excitation stage, individual and coupled effects are

quantified by an adjusted metamodel-based global sensitivity anal-
ysis (GSA) to reduce the computational cost, and an objective func-
tion composed of sensitivity indices generates excitation operations
through optimization algorithms. Second, in the subsequent param-
eter estimation stage, the polynomial chaos-based Kalman filter
(PC-KF) proposed by Blanchard et al. [17] is implemented and

the estimation results are validated per hypothesis tests. The imple-
mentation is detailed in the following subsections.

2.1 Definition of System and Operation Parameters. In
general, dynamic systems can be generally described by Eq. (1)
with generalized output m

m = f (x, θ) (1)

Each set of operation parameters, denoted as x= [x1, x2, …, xl],
determine how the system can be manipulated and controlled by
users. For example, in this research, geometric parameters of
planned path, and required velocity, were defined as the operation
parameters.
Model parameters, represented as a vector of the form θ= [θ1, θ2,

…, θk], are the unknown parameters of the model. In this research,
measurable/certain/time-invariant specification parameters in the
model are considered to be constants, and the immeasurable but
fixed parameters are the independent variables of Eq. (1). We
assumed that all unknown parameters were uniformly distributed,
within their possible ranges. If the system has k model parameters,
a k-dimensional multivariate design space is formed as the sampling
space for GSA.
The definition of operation parameters and model parameters

constitutes a preliminary step in the whole process. With a clear def-
inition on probability density and with a formalized multivariate
design space of model parameters, a method to quantify effects
by parameters’ deviation is detailed in the later sections.

2.2 Global Sensitivity Analysis. GSA is a popular technique
for quantifying the influence of model-parameter deviations on
system output [18]. GSA (1) entails a comprehensive analysis of
the system, (2) covers the whole design space of inputs, and (3)
quantifies the interaction effects. Equation (2) shows the decompo-
sition of function variance Var into the main term and a set of inter-
action using Sobol’s GSA method [19]. The sensitivity index of
each term can then be obtained by normalizing each term, as repre-
sented in Eq. (3).

Var =
∑k
i=1

Vi

( )
+

∑k
i1=1

∑k
i2=i1+1

Vi1,i2

( )

+
∑∑∑

Vi1 ,i2,i3

( )
· · · + V1,...,k

( )
(2)

Fig. 1 Flowchart of the proposed method
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Si1···is = Vi1···is/Var (3)

Let us define themain sensitivity index (MSI, denoted as Si) as the
partial variance with respect to a single parameter θi, and the total
sensitivity index (TSI, denoted as Sti) as the total influence of θi con-
sidering the main effect and all the interaction effects. Both indices
are normalized to 0–1 and expressed as

MSI = Si = Vi/Var (4)

TSI = Sti = Si + S
⌢

i,∼i = 1 − S
⌢

∼i (5)

where S
⌢

i,∼i is the sum of all the Si1···is terms that are involved with

the index i and at least one index from (1,…, i− 1, i+ 1,…, k); S
⌢

∼i
is the sum of all the Si1···is terms that are not involved with the index
i.
GSA can be approached using several methods. The following

passages introduce procedures for GSA indices.
Obtaining the GSA of the complex system requires some adjust-

ments of the original Sobol method. The steps of the Sobol method,
as documented in Ref. [20], include:

(1) Create low-discrepancy sampling matrices
This step creates N samples on the k-

dimensional model parameter space using a Sobol sequence
[21]. A 2k-dimensional Sobol sequence is formed, and it is
split into two independent sampling matrices P and Q:

P = P1 . . . Pk

[ ]
=

θ1,1 . . . θ1,k

θ2,1 . . . θ2,k

..

. . .
. ..

.

θN,1 . . . θN,k

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦,

Q = Q1 . . . Qk

[ ]
=

θ1,k+1 . . . θ1,2k

θ2,k+1 . . . θ2,2k

..

. . .
. ..

.

θN,k+1 . . . θN,2k

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

(6)

P and Q can generate an R i matrix by replacing the ith
column of P with the ith column of Q, where i= 1, …, k.
Therefore, R i can be denoted as

Ri = P1, . . . , Qi, . . . , Pk
[ ]

=

θ1,1 . . . θ1,i−1 θ1,k+i θ1,i+1 . . . θ1,k

θ2,1 . . . θ2,i−1 θ2,k+i θ2,i+1 . . . θ2,k

..

. . .
. ..

. ..
. ..

. . .
. ..

.

θN,1 . . . θN,i−1 θN,k+i θN,i+1 . . . θN,k

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦
(7)

Thus far, P, Q, and R1, …, R k are formalized, and each row
of these matrices is a sampling point within an experimental
design.

(2) Simulate the model and calculate Sobol indices
This step simulates the model with the N samples as g(P),

g(Q), and g(R i) which correspond to input sampling matri-
ces. The GSA indices Si and Sti can be calculated using
Eqs. (8) and (9).

Si =
var(E(g|pi))

var(g)

=
(1/N)

∑N
u=1 g(Q)u(g(R

i)u − g(P)u)

(1/N)
∑N

u=1 (g(P)u)
2 − ((1/N)

∑N
u=1 g(P)u)

2
(8)

Sti =
var(E(g|p∼i))

var(g)

=
(1/2N)

∑N
u=1 (g(P)u − g(Ri)u)

2

(1/N)
∑N

u=1 (g(P)u)
2 − ((1/N)

∑N
u=1 g(P)u)

2
(9)

By these two steps, MSI and TSI can be obtained. However, this
procedure is only suitable for systems with scalar output. The Sobol
method must be adjusted for applications to a dynamic output
system.
For a complex model with time function outputs, an adjusted

Sobol method—where metamodel techniques are added to principal
component analysis (PCA)—is introduced in this section. Methods
on calculating GSA indices through PCA are adjusted from Refs.
[22–24]. To achieve precise calculation on sensitivity indices and
also deal with the substantial computational cost of simulation,
this research formalized metamodels to substitute for complex
systems [19]. This substitution markedly lowered the computational
cost with the steps of the operation are listed as follows:

(1) Create initial sampling
For a system with k dimensions and N training samples,

initial sampling of model parameters is formalized with a
Sobol sequence.

(2) Simulate the model
Simulate the model with the samples. Assuming that each

output of the simulation can be formed by l data points,
denoted as yi= [yi(1), yi(2),…, yi(l )], the output of N training
samples is as follows:

y =

y1
y2
..
.

yN

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ =

y1(1) y1(2) · · · y1(l)
y2(1) y2(2) · · · y2(l)

..

. ..
. . .

. ..
.

yN (1) yN (2) · · · yN (l)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

N×l

(10)

(3) Principal component analysis
PCA was executed through the discrete Karlunen–Loéve

transform [25], reforming yi into a linear combination of
principal components and their coefficients, named PCA
coefficients, which represents yi in finite scalar value so
that the Sobol method can be applied. Simulation output
data are reconstructed in PCA form in Eq. (11) with de, the
truncation number to reduce dimensions. The value of de is
determined such that the reserved portion of the original
data is more than Θ (default as 99.9%). Equation (12)
shows that de is the argument of the solution satisfying the
desired Θ value. The symbol ⌊⌋ indicates the floor of such
arguments. �y is the average response of y. Note that ϕj is
the jth principal component and Cj is the corresponding
PCA coefficient obtained from Eq. (13); Ij and Bj are the cor-
responding eigen values and eigen vectors of covariance
matrix in PCA.

yi =
∑de
j=1

��
Ij

√
BjCj =

∑de
j=1

Cjϕj + �y (11)

de = arg

∑de
j=1 Ij∑l
j=1 Ij

> Θ = 99.9%

{ }⌊ ⌋
(12)

Ci,k =
1��
Ii

√
∑l

i=k

YkBk (13)

(4) Build metamodels
Kriging metamodels are created to connect the relationship

between sampling points and the model output [26]. During
model regression, model enhancement techniques—such as
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the infill sampling criteria (ISC)—are used to confirm the
goodness of fit. The details of Kriging models, ISC, and
accuracy assessment procedures have been discussed in
Refs. [26,27]. In this research, a single Kriging model was
to predict a single PCA coefficient. Several Kriging models
must be formalized, and they are denoted as
F̂C1 (θ), . . . , F̂Cde (θ). By using the initial sampling matrix as
the input and C1, …, Cde as the output, the Kriging model
can easily predict PCA coefficients as Ĉ =
[Ĉ1, Ĉ2, . . . , Ĉde] with respect to any experimental design
of model parameters.

(5) Predict PCA coefficient through metamodel
After scalar representation of the dynamic output is

constructed and the complex simulation model is replaced
by several Kriging models, the Sobol method can be
applied. In this step, GSA used the sampling matrices P,
Q, and R i with k-dimensions, and NGSA samples are
formalized by the method executed in step 1. With the
formalized Kriging models, PCA coefficients of a com-
plex system with P, Q, and R i can be predicted, denoted
as ĝ1(P), . . . , ĝde(P), ĝ1(Q), . . . , ĝde(Q), and ĝ1(Ri),
. . . , ĝde(Ri).

(6) Global sensitivity analysis
With total PCA coefficients, GSA of each PCA coefficient

can be done by considering PCA coefficients are different
and independent model output. By the Sobol method, one
may calculate the sets of Si and Sti of PCA coefficients. To
fuse all GSA indices into one index, weighted average of
each Si and Sti is performed as Eq. (14), where Ij is the corre-
sponding eigenvalue [23].

Si =

∑de
j=1 (IjSi,j)∑de

j=1 Ij
; Sti =

∑de
j=1 (IjS

t
i,j)∑de

j=1 Ij
, i = 1, . . . , k (14)

By following these steps, the fused GSA indices of the dynamic
system are obtained. Through the use of GSA, where the effects of
each unknown parameter are quantified, the identifiability of speci-
fic parameters may be compared between different maneuvers.

2.3 Obtaining the Optimal Excitation Using Global
Sensitivity Analysis. To effectively estimate the real value of a
particular parameter θi, the suitable operation x* ought to be able
to yield the effect contributed from the deviation of θi; this effect
can be conceptually described as Eq. (15), which shows that
under the optimal operation x*, the system output difference is
amplified even if the estimate target θi is fine-tuned.

x∗i = argmax
∂f
∂θi

(15)

The optimal operation for parameters considers the contribution
(GSA indices) of unknown parameters changes under different
manipulations. The operation parameters x, controlled by users,
are the design variables in the optimization. The objective function
of a particular model parameter θi excitation, following the concept
of Eq. (15), can be listed as follows:

Hp(S1 · · · Sk, St1 · · · Stk) =
1

Var1/n
Sti − Si
Si

+
S1 + · · · + Sk − Si

Si

( )
(16)

Equation (16) minimized the interaction effects and main effects of
non-observed terms shown as the numerator, while the main effect
of θi and the total variance of system output under uncertain model
parameters are maximized. Note that n in Eq. (16) is a scaling factor
to ensure a more balanced optimum between the total variance and
the GSA and will be assigned depending on the scale of variance in
different cases.
As evident in Fig. 2, as long as the sampling matrix is fixed, the

only variable in the GSA process is x. In other words, system var-
iance and GSA indices are changed only by adjusting x. Therefore,
to surrogate the complex process of GSA, the index generator,
denoted as F̂(x) in Fig. 2, is formalized to create a continuous
regression model. In this research, corresponding single-output
index generators of the total variance and each GSA index are for-
malized by Kriging models, as illustrated in Fig. 3, and denoted as
F̂var(x), F̂mi (x), F̂ti (x), and so on. Thus, by substituting the GSA
indices into Eq. (16), the resulting optimization problem in

Fig. 2 Index generator
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general form is as follows:

min Hp(S, St) =
1

V̂ar1/n
Ŝti − Ŝi
Ŝi

+
Ŝ1 + · · · + Ŝk − Ŝi

Ŝi

( )

w.r.t x

s.t. ∀{x, θ} ∈ F
where V̂ar = F̂var(x)

Ŝi = F̂mi (x), i = 1, . . . , k

Ŝti = F̂ti (x), i = 1, . . . , k

(17)

Equation (17) shows the intermediate variables on the GSA
indices along with the constraints that keep operation in feasible
domain. The optimal operation x* can be solved through optimiza-
tion techniques, in this research we used the DIRECT algorithm
[28] for its robustness in obtaining results. These procedures consti-
tute a systematic method for designing a dynamic test operation.
The deviations of θi are well known to be more identifiable; such
a property allows for better estimates of unknown model parameters
in the validation stage.

3 Parameter Estimation Through Polynomial
Chaos-Based Kalman Filter
In the computer model validation stage, techniques for estimating

multiple unknown parameters simultaneously under measurement
errors are needed. Most engineering applications use Baysian
probability-based maximum likelihood estimation or the methods
of least squares as in Refs. [29,30]. Blanchard et al. proposed a
novel Kalman filter combined with polynomial chaos expansion
(PCE) [17] that yielded high accuracy with less samples. This
PC-KF is known to be highly applicable, and it was therefore
selected as the estimation technique in this research.

3.1 Polynomial Chaos-Based Kalman Filter. This section
introduces PC-KF as well as its constituent steps in practical appli-
cations. The PCE and PC-KF have been detailed in Refs. [17,31].
A polynomial chaos expanded function can be realized as a

regression model, especially when used to describe a random
process. A second-order random process X(ϑ), viewed as a function
of random event ϑ, can be expanded as a linear combination of
orthogonal polynomial chaos as follows:

X(ξ(ϑ)) =
∑∞
j=1

cjψ j(ξ(ϑ)) (18)

where ψj(ξ) are generalized Wiener–Askey polynomial chaos
with respect to np-dimensional random variables ξ = (ξ1, . . . , ξnp )

∈ Ω ⊆ Rnp . These orthogonal polynomials follow the Galerkin pro-
jection [32] as follow:

ψ i, ψ j
〈 〉

= δij, i, j ∈ S, δij =
1 when i = j

0 when i ≠ j

{
(19)

The multidimensional basis functions ψj(ξ) are tensor products of
one-dimensional polynomial basis functions P(ξk):

ψ j(ξ1, . . . , ξn) =
∏n
k=1

Plk
k (ξk),

j = 1, 2, . . . , S, lk = 1, 2, . . . , pb

(20)

where pb is the maximum order of P(ξk), and S= (np+ pb)!/np!pb! is
the total number of terms.
The update of a system is written as Eq. (21), where the super-

scripts f and a stand for the predicted (forecast) and estimated
(assimilated) values, respectively. M is a one-step-ahead model
that predicts the future state based on the existing information.

yfk
θfk

[ ]
=

M(tk−1, yak−1, θ
a
k−1)

θak−1

[ ]
(21)

The updating mechanism of PC-KF follows Eq. (22) with consider-
ing the covariance of prediction uncertainty.

yak
θak

[ ]
=

yfk
θfk

[ ]
+Kk zk −H

yfk
θfk

[ ]( )
= (I −KkHk)

yfk
θfk

[ ]
+Kkzk

(22)

H in Eq. (22) is the observer, K is the Kalman gain, and Rk is the
noise covariance matrix. Each element in Rk is the variance of mea-
surement noise corresponding to the state in H:

H=

H1 0 · · · 0
0 H2 · · · 0

..

. ..
. . .

. ..
.

0 0 · · · Hns

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

ns×ns

, Rk =

R1k 0 · · · 0
0 R2k · · · 0

..

. ..
. . .

. ..
.

0 0 · · · Rnsk

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

ns×ns

(23)

Kk = Pk
HT

0

[ ]
(Rk +H(Pyy)

f
k)H

T )−1

=
(Pyy)

f
kH

T

(Pθy)
f
kH

T

[ ]
(Rk +H(Pyy)

f
k H

T )−1

(24)

where Pyy and Pθy are the covariance matrix between state/state and
model parameter/state, respectively.
However, for a complex system when linearity assumption is no

longer valid, predicting the output states from tk−1 to tk is quite chal-
lenging. Thus, in this research, we adopted the method in Ref. [33]
to obtain yfk and Pk from yak−1, θ

a
k−1, and Pk−1. The computer model

only updates the estimated parameters θak−1 and then runs simula-
tions from t= 0 to t= tk once again to avoid predicting yfk and Pk

Fig. 3 Structure of index generator

Table 1 Operation and unknown model parameters of the
illustrative math model

Unknown model parameters θ1 θ2 θ3
Distribution U(0.95, 1.05) U(0.95, 1.05) U(0.95, 1.05)

Operation parameters x1 x2 x3
operation space [5, 10] [0, 0.5] [0, 10]

Journal of Mechanical Design SEPTEMBER 2021, Vol. 143 / 091704-5



directly. The calculation of Pf
k is as follows:

Pf
k = Cov

yfk
θfk

[ ]( )
=

Cov(yfk) Cov([yfk , θ
f
k])

Cov([θfk , y
f
k]) Cov(θfk)

[ ]

=
(Pyy)

f
k (Pyθ)

f
k

(Pθy)
f
k (Pθθ)

f
k

[ ] (25)

To substitute yfk and θfk , we assume that N samples of np-
dimensional θ are taken and simulated with the ns output state y
at t= tk. Under the same PCE structure, they can be represented
as follows:

yfm,k =
∑S
j=1

(yfm,k)
jψ j(ξ), 1 ≤ m ≤ ns (26)

θfi,k =
∑S
j=1

(θfi,k)
jψ j(ξ), 1 ≤ i ≤ np (27)

PC-KF can be represented as follows:

∑S
j=1 (y

a
k )

jψ j(ξ)∑S
j=1 (θ

a
k )

jψ j(ξ)

[ ]
= (I −KkHk)

∑S
j=1 (y

f
k)

jψ j(ξ)∑S
j=1 (θ

f
k)

jψ j(ξ)

[ ]

+Kkzkψ
1(ξ), j = 1, . . . , S

(28)

where ψ1(ξ)= 1. By Galerkin projection, each orthogonal term is
isolated and left with only the coefficients. Through these processes,
the estimated polynomial chaos coefficient of the model parameters
can be obtained from the following equation:

(θak )
j = (θfk)

j + (Pθy)
f
k H

T (Rk +H(Pyy)
f
kH

T )−1(zkδ1j −H(yfk)
j),

j = 1, . . . , S
(29)

By using PC-KF, multiple parameters can be estimated simulta-
neously by considering measurement errors.

3.2 Results Validations. Given that the only difference
between a computer model and a real system is the deviation of
model parameters under the designed operation, model parameters
should be the argument in Eq. (30).

θ̂ = argmin f (x∗, θreal) − f (x∗, θ̂)
∣∣∣ ∣∣∣∣∣∣ ∣∣∣ (30)

The true values of many real-world models, however, are
unknown and therefore the estimates can only be validated using
the system output. The last step of our method is to validate the esti-
mated model parameters through experimental data using hypothe-
sis testing. To overcome the difficulties in dynamic function output,
geometric mean of the test statistic of each data point is considered
as the equivalent test statistic representing the whole system output.
For example, to test the computer model with estimate parameters,
first, simulate the model with measurement noise N times and

collect the output data with n equal steps:

ysim =

ysim1 (1) ysim1 (2) · · · ysim1 (n)
ysim2 (1) ysim2 (2) · · · ysim2 (n)

..

. ..
. . .

. ..
.

ysimN (1) ysimN (2) · · · ysimN (n)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (31)

Furthermore, run one experiment and obtain a vector output with
the same length as that in Eq. (31):

yexp = [yexp(1), yexp(2), . . . , yexp(n)] (32)

We then calculate the ith mean and standard deviation of the simu-
lation output, i= 1,…, n, and construct its confident interval. Then,
calculate the test statistic of yexp(i) through a comparison with
ysim(i) = [ysim1 (i), ysim2 (i), . . . , ysimN (i)]T , i = 1, . . . , n. The following

Fig. 4 Direct approach to optimizing exitation operation

Table 2 Comparison between optimal excitation operation
parameters from two methods

Excite target [x∗1 , x
∗
2 , x

∗
3] Var

Direct approach
θ1 [9.7222, 0.4722, 0.5556] 11,977
θ2 [9.7222, 0.0278, 9.4444] 9661
θ3 [5.0001, 0.1140, 9.9997] 3454

Metamodel-based approach
θ1 [9.8333, 0.4883, 0.3333] 12,206
θ2 [9.7222, 0.0278, 9.1667] 9409
θ3 [5.0333, 0.0250, 9.8444] 3242

Fig. 5 GSA indices on exciting unknown model parameters:
(a) GSA indices on exciting θ1, (b) GSA indices on exciting θ2,
and (c) GSA indices on exciting θ3
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result is obtained:

α = [α(1), α(2), . . . , α(n)] (33)

with the equivalent test statistic αeq:

αeq = n
����������������������������
α(1) × α(2) × · · · × α(n)

√
(34)

By assuming that only the deviation of model parameters contribute
to the output differences of the two models, the null hypothesisH0 is
posited; this hypothesis states that the output data are the same,
which means that they are inferred to be from the same parameter
sets. The alternative hypothesis H1 declares the output difference
and inaccuracy of estimate parameters. Thus, a test of αeq with

95% confidence entails the following:

if αeq ≥ 0.975, H0 is rejected, H1 stands

if αeq < 0.975, H1 is rejected, H0 stands

{
(35)

In this proposed method, with excited operation, we expect the
identifiability of model parameters to increase and necessarily
lead to a more accurate estimation; we validate this expectation
through hypothesis testing. In the later sections, the proposed
method is demonstrated and verified.

4 An Illustrative Analytical Example
In this section, we apply the proposed method on a math problem

to demonstrate the effectiveness and validity of the method.

Fig. 6 Parameter estimation when exciting different model parameters: (a) parameter estimation with
Kalman filter when exciting θ1, (b) parameter estimation with Kalman filter when exciting θ2, and
(c) parameter estimation with Kalman filter when exciting θ3

Table 3 Estimation result on model parameters; [θreal1 , θreal2 , θreal3 ] = [1.015, 1.03, 0.96]

Excite θ1 Excite θ2 Excite θ3

θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3

Estimate 1.017 1.0326 0.9876 1.0125 1.0282 0.9616 0.0112 1.0267 0.9595
Var. of estimate 0.0018 0.0027 0.0137 0.0016 0.0017 0.0017 0.0033 0.0035 0.003
Error value 0.002 0.0026 0.0276 0.0025 0.0018 0.0016 0.0038 0.0033 0.0005
Error percentage 0.20% 0.25% 2.88% 0.25% 0.17% 0.17% 0.37% 0.32% 0.05%
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Suppose a dynamic engineering system can be mathematically
described as follows:

y(t) = θ1x1 cos
θ2 + x2
θ3

t

( )
+ θ3 log (x2) sin

1
x1

( )
+

����
x2t

√
θ3x3

( )
− 3

(36)

with operation parameters x and model parameters θ that are listed
in Table 1.
Set the simulation time t= 0–15(s) with a 100Hz sampling rate.

N= 600 low-discrepancy samples are taken within the three-
dimensional design space of θ by a Sobol sequence.

4.1 Metamodel-Based Approach to Global Sensitivity
Analysis and Operation Excitation. A three-dimensional low-
discrepancy sample set within the design space of operation param-
eters x = {x1, . . . , xp, . . . , xns} is generated. In this case, ns= 125,
which is 40 times larger than the number of design variables.
By applying the GSA techniques for dynamic output as presented

in Sec. 2.2, each simulation output yi, i= 1, …, 600, can be trans-
formed into a linear combination of five principal components
with PCA coefficients C= {C1, …, C5} if 99.9% of information
can be reserved. Therefore, five Kriging models are formalized
with θ as the model input, where C1, …, C5 are the respective
model outputs. Each Kriging model is assessed by two indices R2

and relative average absolute error (RAAE) [27], and R2 > 0.98,
RAAE< 0.06 for each ensures their accuracy.
These high fidelity Kriging models replace the original model to

obtain the GSA indices of each PCA coefficient as in Sec. 2.2.
These GSA indices are then assigned as the model output; index
generator, the continuous response surface between the indices
and operation sites x, is then generated. Thus, the optimization is
formulated as follows:

minHp(x)=
1

V̂ar

F̂ti (x)− F̂mi (x)

F̂mi (x)
+
F̂m1 (x)+ · · ·+ F̂mk (x)− F̂mi (x)

F̂mi (x)

( )

w.r.t x

∀x ∈ F (37)

Where the terms with hat notation indicate the index generators and
correspond to GSA indices. Operations that excite the unknown
parameters θ1 to θ3 can be obtained. With metamodels, this
method can also be implemented on a computationally expensive
system.

Fig. 8 Vehicle model in Simulink

Table 4 Specifications of tricycle: measurable/temporarily assumedmodel parameters that must be constant in the vehicle dynamic
model

Item Notation Value Unit Item Notation Value Unit

Front axle to COM l1 0.724 m Gross mass m 48.3 kg
Rear axle to COM l2 0.719 m Inertial on x axis Ix 12.1 kg m2

Left axle to COM w1 0.3065 m Inertial on y axis Iy 36.7 kg m2

Right axle to COM w2 0.3135 m Inertial of right wheel IfR 0.3 kg m2

Ground to COM h 0.4896 m Inertial of left wheel IfL 0.3 kg m2

Wheel base p 1.43 m Inertial of rear wheel Ir 0.5 kg m2

Track w 0.62 m Radius of front wheel r0f 0.3302 m
Forward offset d 0.048 m Radius of rear wheel r0f 0.3302 m
Angular offset on left wheel ΔfL −1 deg Width of front tire tf 0.025 m
Angular offset on right wheel ΔfR 3.5 deg Width of rear tire tr 0.025 m
Long. max. friction coeff. μdp 0.8 – Tire vertical stiffness kz 30,000 N/m
Lat. max. friction coeff. μdp 0.8 – Gravity g 9.81 m/s2

Fig. 7 X-by-wire tricycle
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4.2 Direct Approach on Global Sensitivity Analysis for
Operation Excitation. The proposed metamodel-based method
is verified by comparing with the results from the direct approach,
as illustrated in Fig. 4. We also use DIRECT algorithm with corre-
sponding GSA indices based on the method in Sec. 2.2.

4.3 Comparisons of Optimal Excitations. The optima of the
two methods are compared in Table 2. The results indicate that both
methods yield similar results. By substituting x* from both methods
back into the mathematical model and calculating the GSA indices,
the comparison of GSA is illustrated in Fig. 5. If the difference
between the two results is small, then the accuracy of the index gen-
erator is proven to be sufficiently high and the metamodel-based
approach is therefore verified.

4.4 Unknown Parameter Estimation Through Polynomial
Chaos-Based Kalman Filter. With verified optimal excitation
operations, a PC-KF can be applied to estimate the unknown param-
eters. In the preliminary setting, np was set to 7, and the iteration of
PC-KF was k= 20. Furthermore, white noise N(0, 0.1) was added as
measurement noise to create a simulated real system output z(tk).

We assumed that θ in the real model were [θ1, θ2, θ3]= [1.015,
1.03, 0.96]. The estimation results under three different excitation
operations are presented in Fig. 6 and Table 3.
Figure 6 and Table 3 both show that the operation on exciting θ2

yields the best estimate (with the least error value and variance of
estimate) if the mean of each estimated distribution is considered
as the estimated value θ̂. Although the total variance is the
largest, the variance from θ3 is small as in Fig. 6(a), which results
in the wide confident interval. In Fig. 6(c), although the fraction
from each factor is closer, the confident intervals are still larger
than those in Fig. 6(b). One may infer from the results that if an
unknown parameter can be estimated accurately with high confi-
dence, the variance contributed from its main effect (approximately
equal to the product of MSI and total variance) should be greatly
increased. This fact proves the importance of designing an objective
function to strike a balance between GSA indices and total variance.
These tests confirm the conditions, under which an excitation oper-
ation is designed, that can improve the model parameters’ identifia-
bility values. In this case, the estimated model parameters from the
operation that excites θ2 are [θ̂1, θ̂2, θ̂3] = [1.0125, 1.0282, 0.9616];
these are considered as the final result and will be validated through
an output comparison with the real model.

Fig. 9 Double lane change with different parameters: (a) Bézier curves and distance
parameters and (b) Bézier curves with different parameters

Fig. 10 System operation flowchart
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4.5 Results Validations. Validation was executed under an
independent operation. In this case, xval= [7.5, 0.25, 5] was
assigned as a validation operation. A real model that carried θreal
was required for the conduct of one simulation with added measure-
ment noise N(0, 0.1) as experimental data. A model that carries θ̂ (as
a computer model) requires 500 replicates with measurement noise.
From 500 outputs with 1500 data points for each, the 95% confident
interval of 500 data points in the same period was formalized. Fur-
thermore, 1500 data points in experimental data were tested with the
formalized confident interval and 1500 test statistics along with the
equivalent test statistic αeq were calculated. In this case, αeq=
0.7416 < 0.975, thereby proving the validity of θ̂.
This mathematical model illustrates the implementation and ver-

ification of the proposed method. Given appropriate assumptions,
this method can be applied to any system that can represent ele-
ments in the form of Eq. (1). In the subsequent section, we detail
an engineering case.

5 Engineering Case Study: A Tricycle With Dynamic
Performance
The proposed method is applied on an x-by-wire tadpole

designed tricycle in this section, as shown in Fig. 7. This tricycle
is used in our facility as a cheaper test-bed for autonomous vehicles
due to its transparent structure and less components. Figure 8 shows
the corresponding three-wheeled vehicle dynamic model in Simu-
link following the ISO-8855:2011 axis definition based on
vehicle dynamic and motorcycle dynamic models [34–36].
Table 4 lists the specifications of the tricycle, including some mea-
surable parameters. We can make provisional assumptions regard-
ing immeasurable parameters, which are considered to have a
negligible influence.
Six unknown model parameters are selected to be estimated as in

Table 5, along with their possible ranges that contain true value
θreal. For operation parameters, four testing maneuvers elected as
the basis scenarios where each of them are formed with two
parameters:

(1) Double lane change: Bézier curves [37] in Eq. (38) are used
to form a smooth curve as the trajectory, as illustrated in
Fig. 9(a). Because P0 and P3 are fixed, x1= d1∈ [2, 8] and
x2= d2∈ [2, 8] are set as the parameters that determine the
curvature of the whole curve. Figure 9(b) shows the curves
with different operation parameters.

B(t) = P0(1 − t)3 + 3P1(1 − t)2 + 3P2t
2(1 − t) + P3t

3,

t ∈ [0, 1]
(38)

(2) Steady-state cornering: This maneuver is considered as the
“static” test for several lateral variants and is defined by
the two following operation parameters in Eq. (39): radius
of trajectory x1= r∈ [2, 6] and required velocity x2= v∈
[0.8, 2].

x = r cos 2rt −
π

2

( )
y = r sin 2rt −

π

2

( )
⎧⎪⎨
⎪⎩ (39)

(3) Chirp sine and inverse chirp sine: Inspired by the commonly
used method in the field of system identification, the chirp
sine is the increasing values of its angular frequency with
time, where the corresponding inverse chirp sine values are
the decreasing values. With these values, the system under-
goes a highly dynamic operation. The chirp sine values in

Table 6 Weights of GSA indices and variance fusion in different
maneuvers

Observed
sate

Double lane
change

Steady-state
cornering

Chirp
sine

Inverse chirp
sine

X 0.1 0.4 0.05 0.05
Y 0.7 0.4 0.85 0.85
ψ̇ 0.2 0.2 0.1 0.1

Fig. 11 GSA indices of selected maneuvers: (a) GSA indices of
selected double lane change, [x∗1, x

∗
2]= [5.8253, 1.1578], (b) GSA

indices of selected steady-state cornering, [x∗1, x
∗
2]= [2.0011,

0.90782], (c) GSA indices of selected chirp sine, [x∗1, x
∗
2]=

[0.24340.9906], and (d) GSA indices of selected inverse chirp
sine, [x∗1, x

∗
2]= [0.2, 0.73272]

Table 5 Unknown model parameters and their possible range

θ Item Notation l.b. u.b. Unit

θ1 Inertial on z axis Iz 30 90 kgm2

θ2 Cornering stiffness Cα 500 1500 N/rad
θ3 Camber stiffness Cβ 25 75 N/rad
θ4 Self-aligned parameter (SAP) SAP 0 0.03 m
θ5 Rolling resistance 1 μr0 0.0045 0.0135 –
θ6 Rolling resistance 2 μr1 0.0002 0.00075 v−2
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this case are as follows:

(xchirp, ychirp) =
x = 0.2t

y = A sin ((0.5 + 0.05eλt)ωt)

{
(40)

where the amplitude x1=A∈ [0.5, 1] and decay x2= λ∈
[0.05, 0.25] are the controlled parameters, and ω is a
constant fixed as 1. The inverse chirp sine values are
modeled as follows.

(xinv.chirp, yinv.chirp) =
x = 0.2t

y = A sin ((1 − 10−8eλt)ωt)

{
(41)

where x1=A∈ [0.5, 1], x2= λ∈ [0.04, 0.2], and ω= 0.1.

Figure 10 illustrates the entire process from operation parameters
to form trajectories to the system models and then to the final per-
formance output. In the closed-loop drive simulation, the pure
pursuit algorithm2 was used to follow the trajectory formalized by
x, and the model parameters in this stage θ0 were the median of
each θi called initial model parameters. The closed-loop simulation
obtains the corresponding drive and steer commands that are the

input to the opened-loop drive for Sobol GSA. In opened-loop
drive, sampling matrices P, Q, and R i are substituted and perfor-
mance output can be calculated with parallel computation, and sen-
sitivity indices can be obtained with the same GSA method. With x
and θ clearly defined and the model operation established, the com-
plete procedure was executed based on Fig. 1.

5.1 The Optimal Excitation Maneuver. The excitation oper-
ation is defined as a composite maneuver that can excite most of the
unknown model parameters. This section demonstrates how this
operation can be built with the four basis maneuvers. Three state
outputs—X and Y locations on global coordinates and the yaw
rate ψ̇—were simultaneously observed and analyzed to perform a

Fig. 12 Composite maneuver for parameter estimation

Table 7 Model parameters in the virtual experiment model

θ1 θ2 θ3 θ4 θ5 θ6
Iz Cα Cβ SAP μr0 μr1

48.8834 1413.4876 56.618 0.0029 0.007 5.23 × 10−04

Fig. 13 Structure of the virtual experiment (Inertia Measurement Unit (IMU))

Table 8 Sensing errors

Objective Item Error Distribution

ax IMU acc. error ±3% N(0, (0.03ax)
2)

ay IMU acc. error ±3% N(0, (0.03ay)
2)

ψ̇ IMU angular vel. error ± 0.08726 rad/s N(0, 0.043632)
X Drone image error ± 0.05 m N(0, 0.0252)
Y Drone image error ± 0.05 m N(0, 0.0252)

2
MATLAB Pure Puresuit.
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more comprehensive GSA on the parameters’ effects. Each state
owns its individual Si, Sti , and Var, with their weighted sum form
the fusion of indices of the overall Si, Sti , and Var. The weights in
different cases, as listed in Table 6, were assigned to represent the
importance of states. For example, in the maneuver of a double
lane change, because Y is more crucial than X, Y has the larger
weight. A similar situation exists in steady-state cornering;
because the importance and performance of X and Y are the
same, their assigned weights are identical. At present, there is no

systematic method for weight assignment; it can only be done
through observing the total variance of each state and through
intuition.
The objective function for the optimal excitation operation is

formed with the fused GSA indices and total variance as in Eq.
(42). As for scale factor n, since most of our studies showed that
the total variance are between 10 and 1000 under different operating
conditions, therefore we use n= 3 to ensure a 0 ~1 scale. For differ-
ent applications, the values of n should vary.

min Hp(x) =
1

F̂var(x)
( )1/3 F̂t1 (x) − F̂m1 (x)

F̂m1 (x)
+
F̂m1 (x) + · · · + F̂m6 (x) − F̂m1 (x)

F̂m1 (x)

( )

w.r.t x

s.t. ∀{x, θ} ∈ F

(42)

During the creation of index generators, the system only has two
operation parameters in each operation; thus, a five-level full-
factorial experimental design for the two-dimensional space of x
was constructed. In each designed experiment, the GSA indices
of θi were calculated using the metamodel-based GSA method.
Note that to attain sufficient accuracy, 1400 initial samples are
taken along with ISC applied to confirm R2 > 0.99 and RAAE<
0.05 for every Kriging model. Furthermore, the fused accuracy
assessment indices were taken to be the weighted sum of the
reserved PCA coefficients—an identical approach to that in the
fusion method for sensitivity indices.
The composition of optimal operation x* from each maneuver

can be formed as the final testing maneuver. By re-calculating Eq.
(42) for i= 1, …, 6 with four maneuvers, respectively, a total of
24 optimal values of x* were calculated. In this case, only one
optimal set of x was picked from each maneuver to form the final
testing maneuver. The selected set of four operations not only
must have a relatively large Var but also the set must also (hope-
fully) have each θi be excited at least once (meaning that its
MSI or TSI should be enlarged at least once). The GSA indices
of the four selected x* ––[x∗1, x∗2] = [5.8253, 1.1578] in double
lane change, [x∗1, x

∗
2] = [2.0011, 0.90782] in steady-state corner-

ing, [x∗1, x
∗
2] = [0.24340.9906] in chirp sine, and [x∗1, x

∗
2] =

[0.2, 0.73272] in inverse chirp sine — are illustrated in Fig. 11.

With these optimized results, the single composite maneuver is
illustrated in Fig. 12. The composite maneuver in this case is
mainly used for demonstration and for verifying our methodology;
it may differ if the included maneuvers are changed.
In Fig. 11, θ2 and θ5 were relatively easier to be excited, θ1 and θ3

could be excited in this specific case, and θ4 and θ6 were barely
excited. These results also show the irrelevance of θi as a screening
experiment, where the confidence of estimation can be roughly pre-
dicted based on the magnitude of indices. Thus, the selection of this
set may guarantee acceptable estimations on θ1, θ2, θ3, and θ5, but
this set may also result in coupled effects that may lead to multiple
solutions. Thus, the composition of these maneuvers provides mul-
tiple test situations, which affords the greatest chance for multiple
solutions to be eliminated. With the composite maneuver, the
unknown model parameters are expected to be estimated within a
single drive.

5.2 Parameter Estimation. In this section, we detail how,with
the designed maneuver, PC-KF was applied to estimate θ using
experimental data. However, because we assumed that the computer
model and real model differed in only one respect to focus on this
issue, experimental data were simulated from a virtual experiment.
Virtual experiments and computer simulation models differ in two

Fig. 14 Estimated results of model parameters through composite maneuver
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respects. First, although the Simulink models are identical, in a
virtual experiment, all the model parameters are set as known and
fixed, as detailed in Table 7.
Second, simulated sensing errors are added to the observers

as white noise elements. In the virtual experiment, five state
outputs—which could be directly measured without integration,
as noted in Fig. 13—were observed; their error distributions are
listed in Table 8 for ax, ay, X, Y, and ψ̇ . With the known sensing
errors, PC-KF were ready to be used.
The estimated results with k= 20 iterations and updates are illus-

trated in Fig. 14. As evident in this figure, θ1, θ2, θ3 were success-
fully estimated; θ5 was a closed guess with an offset; and θ4 and θ6
were, as expected, unable to be estimated with high confidence.
We use the estimated model parameters in the computer model to

validate the result under an independent maneuver designed for this
stage. Trajectory comparisons between the simulation results (with
measurement uncertainty) of the posterior with the real system are
shown in Fig. 15. Following the method in Sec. 4.5, with the con-
fident interval contributed from 500 simulation data of the posterior
distribution, the equivalent test statistics of the five states were
obtained, and the geometric average of the five test statistics of
states was taken to be the equivalent test statistic of the whole
system output; these findings are listed in Table 9. Following the
hypothesis testing in Eq. (34), it is insufficient to only reject H0

within a 95% credible interval if we wish for the estimated results
to be considered as the real system parameters.
One can compare this result with a PC-KF estimation for a ran-

domly picked double lane change maneuver (Fig. 16); such a com-
parison is the most common method for validating vehicle models,
and the two-estimate results are listed in Table 10. In this compar-
ison, the estimated results from a composite maneuver exhibited not

Table 10 Comparison between composite maneuver and randomly picked double lane change

θ1 θ2 θ3 θ4 θ5 θ6
Real 48.8834 1413.488 56.618 0.0029 0.007 0.000523

Composite maneuver Estimate 49.9348 1422.5 57.6706 0.0023 0.0064 0.000495
Error/span % 1.7523 0.9012 2.1052 2 0.6667 5.0909
Standard dev. 0.202 2.7908 0.7202 0.0019 1.28 × 10−05 1.44 × 10−04

Double lane change Estimate 50.0684 1516.1 55.2672 0.0209 0.0041 0.000505
Error/span % 1.975 10.2612 2.7016 163.333 10.888 3.2727
Standard dev. 0.5183 5.9331 2.0947 0.0077 1.82 × 10−04 1.44 × 10−04

Fig. 16 Estimation result of model parameters through randomly picked double lane change

Fig. 15 Trajectory comparison between the updated model and
the real model (unit: m)

Table 9 Hypothesis test of each output state and overall system

X Y ax ay ψ Overall

Test
statistic

0.7659 0.8507 0.7718 0.7425 0.7369 0.7725

Result Reject
H1

Reject
H1

Reject
H1

Reject
H1

Reject
H1

Reject
H1
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only more precise estimates with slighter offsets but also greater
confidence with a smaller standard deviation. Through this simple
comparison, we can see that the designed composite maneuver
improved the estimation. Although the improvements were not
highly significant, this method still affords us an idea of the valida-
tion process from operation design to parameter estimation and
model validation.

6 Conclusions
We propose an approach for unknown parameter excitation and

validation for dynamic systems. In this approach, operations are
designed to ensure maximum emphasis on the effects on model-
parameter deviations. Although some parameter estimation techni-
ques, such as Kalman filters, are mature, engineers are still unable to
estimate all parameters of a complex system at once due to the exis-
tence of multiple-solution cases. Our method provides ideas on how
one can magnify the effects of all the parameters of interest through
optimal operation design. The method also composes different
maneuvers as an optimal operation, reducing the likelihood of mul-
tiple solutions. For verification, an implementation of a mathemat-
ical model proved that the metamodel-based methods are feasible.
We discussed the mechanism underlying the precise estimation of
the best conditions for PC-KF. The method’s feasibility in engineer-
ing applications was demonstrated by applying it to an x-by-wire
tricycle. As a result, the estimation of model parameters with the
designed operation may lead to more confident and precise esti-
mates. The complete process—including GSA, operation design,
parameter estimation, and validation—was not only novel but
also demonstrated to result in good performance.
Future studies should address some challenges. First, the relation-

ship between parameter identifiability and the precision/quality of
estimation that can be reached remains uncertain. One cannot guar-
antee a precise estimate under the excitation operation for interac-
tion effects between model parameters. Thus, tuning a single
parameter at a time is a difficult task; techniques for estimating
all parameters at once continue to be crucial. In other words, the
benefit of this proposed method must be quantified in several con-
texts. Systematic methods must address complex systems with
numerous states; thus, future studies must discuss (1) normalizing
scale differences on variance and (2) assigning weights for fusing
the output. In our future work, we also plan to apply the proposed
techniques to identify the parameters of a real mechanical system;
we intend to not only test the applicability of this method but also
investigate and expand on the basic assumptions on the contributors
to model errors. We hope that, in the pursuit of superior computer
models, extended methods based on our work will not only
manage parameter differences but also quantify and excite model
defections.
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